Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Molecular dynamics study of multicomponent droplet dissolution in a sparingly miscible liquid

MPG-Autoren
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maheshwari, S., van der Hoef, M., Prosperetti, A., & Lohse, D. (2017). Molecular dynamics study of multicomponent droplet dissolution in a sparingly miscible liquid. Journal of Fluid Mechanics, 833, 54-69. doi:10.1017/jfm.2017.732.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-349B-C
Zusammenfassung
The dissolution of a multicomponent nanodrop in a sparingly miscible liquid is studied by molecular dynamics (MD) simulations. We studied both binary and ternary systems, in which nanodroplets are formed from one and two components, respectively. Whereas for a single-component droplet the dissolution can easily be calculated, the situation is more complicated for a multicomponent drop, as the interface concentrations of the drop constituents depend on the drop composition, which changes with time. In this study, the variation of the interface concentration with the drop composition is determined from independent numerical experiments', which are then used in the theoretical model for the dissolution dynamics of a multicomponent drop. The MD simulations reveal that when the interaction strengths between the drop constituents and the surrounding bulk liquid are significantly different, the concentration of the more soluble component near the drop interface may become larger than in the drop bulk. This effect is the larger the smaller the drop radius. While the present study is limited to binary and ternary systems, the same method can be easily extended to a larger number of components.