English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P.

MPS-Authors
/persons/resource/persons14865

Bock,  L. V.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons212417

Frister,  J. O.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16047

Wohlgemuth,  I.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons40304

Peske,  F.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15155

Grubmüller,  H.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15723

Rodnina,  M. V.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons49113

Vaiana,  A. C.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2495783.pdf
(Publisher version), 6MB

Supplementary Material (public)

2495783_Suppl.pdf
(Supplementary material), 11MB

Citation

Huter, P., Arenz, S., Bock, L. V., Graf, M., Frister, J. O., Heuer, A., et al. (2017). Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Molecular Cell, 68(3), 515-527. doi:10.1016/j.molcel.2017.10.014.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-22D5-8
Abstract
Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.