Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

Veniamin Chevelkov, Karin Giller, Stefan Becker, Adam Lange

Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany

ABSTRACT

In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

1. Introduction

Hydrogen exchange provides important information on the structure and dynamics of proteins. In structured protein regions, amide protons are locked into hydrogen bonds and may be solvent-obstructed, which makes hydrogen exchange significantly slower in comparison to amide sites located in unstructured, solvent-exposed regions. Local and/or cooperative protein motion can open hydrogen bonds, and protons can be exchanged. Linderstrøm-Lang introduced a two-step kinetic model to describe this process [1].

Numerous NMR methods have been developed to map exchange rates, which span over several orders of magnitude [2]. Exchange rates in the timeframe of minutes to months can be obtained by monitoring the amide proton signal decay of lyophilized protein dissolved in D2O buffer [3]. Modifications to this approach allow the monitoring of faster exchange processes [4,5].

To access even faster exchange rates, which are also very important for protein characterization, a variety of pulse sequences have been introduced. Cross peaks between water and amides can be monitored in 3D homonuclear EXchange SpectroscopY experiments (EXSY) [6,7], which require longer measurement time compared to 2D experiments. Saturation transfer techniques allow the use of 2D HSQC experiments to monitor variation in amide magnetization during the hydrogen exchange period defined by a proper experimental scheme [8–12]. However, a number of experimental drawbacks decrease the accuracy of these approaches (see detailed discussion in [13]), in particular amide magnetization evolution due to dipolar couplings with HA, water and hydroxyl protons, and water radiation damping. Recent developments [13–15] aimed to minimize these unwanted effects.

Water-protein interactions in the solid state phase are of great interest, because many proteins are insoluble. Water also plays an important role in the functionality of many biomolecules (e.g. membrane proteins like proton pumps, water channels and ion channels), and solid state NMR (ssNMR) can investigate these processes close to the in vivo physiological state. Hydrogen exchange is an important aspect of water-protein interactions and requires accurate quantification.

A previously developed solution state “non-equilibrium” approach [3] was modified for ssNMR studies: hydrogen-deuterium (H/D) exchange between a protonated protein and D2O buffer is allowed for a certain period of time and amide protonation levels are measured to provide exchange rates [16–21].
time required for sample handling defines the slowest possible observable exchange time, which is expected to be on the order of seconds. On the other hand, equilibrium techniques based on saturation transfer can access faster processes and avoid complicated sample handling. However, many of these experiments suffer from alternative magnetization transfer pathways due to proton-proton dipolar interactions. Although in solution state these can safely be ignored in many cases, numerous studies of water-protein interactions in ssNMR demonstrate an extremely short observable exchange time on the order of 1 ms between amide protons and water or other protons in the protein, due to strong homonuclear dipolar couplings [22–30]. Even in highly deuterated proteins at fast MAS rates, magnetization exchange times between water and amide protons are 20–100 ms [31,32]. Very often, the hydrogen exchange time is significantly longer and methods that safely be ignored in many cases, numerous studies of water-proton dipolar interactions. Although in solution state these can from alternative magnetization transfer pathways due to proton-

2. Materials and methods

Two samples were used in the experiments:

(1) fully protonated, uniformly 15N-, sparsely 13C-labeled PrgI protein in 100% H$_2$O buffer, hereafter referred “protonated”,

(2) perdeuterated, uniformly 15N- and 13C-labeled PrgI protein at 20% re-protonation level on labile sites, hereafter referred “deuterated”.

Expression, purification and polymerization of wild-type PrgI needles were performed as described previously [34–36]. Isotope labeling in the protonated sample was achieved using 15NH$_4$Cl as the sole nitrogen source and D-[13C$_2$, 2H]-glucose as the sole carbon source during expression [34]. Approximately 25 mg of protonated PrgI was packed into a 3.2 mm rotor.

Isotope labeling in the deuterated sample was achieved using 15NH$_4$Cl as the sole nitrogen source and D-[13C, 2H]-glucose as the sole carbon source during expression in D$_2$O media [36]. The sample was back protonated on labile sites in 20% H$_2$O buffer [37]. Approximately 25 mg of deuterated PrgI was packed into a 3.2 mm rotor.

2.1. Solid-state NMR spectroscopy

Solid-state NMR experiments for both samples were conducted on an 800 MHz (1H Larmor frequency) spectrometer (Bruker Biospin, Germany) equipped with a triple-resonance (1H, 13C, 15N) 3.2 mm probe. Both samples were spun at 20 kHz. The effective sample temperature was measured by the temperature-dependent water proton resonance relative to an internal DSS reference [27]. Chemical shift referencing was done using the internal DSS signal.

Longitudinal relaxation times in the protonated sample were measured employing the pulse sequence introduced earlier [38], using 15N-CA 2D correlations to obtained residue-specific information (Fig. 1A). Twelve spectra were recorded with corresponding 15N relaxation delays, ΔT, of 0, 5, 9, 17.5, 0, 33, 0, 60, 0, 110, 110 and 0 s. Spectra with 0 s relaxation delay were uniformly distributed over the series for referencing and to normalize peak intensity in adjacent spectra with non-zero delays. All spectra were recorded with 64 scans, except for the two spectra with 110 s relaxation delays, which were recorded with 16 scans. The duration of the initial H-N cross-polarization (CP) transfer [39] was 1.2 ms and the applied average proton and nitrogen RF fields were 78 and 58 kHz, respectively. SPECIFIC CP [40] lasting 3.5 ms was applied for N-CA magnetization transfer. Average 13N and 15C RF fields were 6 and 14 kHz, respectively. During CP transfer, the 15N RF field was ramped from the maximum power down to 80% or from 80% power up to the maximum, as indicated in Fig. 1A. Continuous wave irradiation with a field strength of 76 kHz was applied on the 1H channel during N-CA magnetization transfer. 13C and 15N maximum acquisition times were 22 ms and 14 ms.

![Fig. 1. Pulse sequences employed for the measurement of 15N-T$_1$ decay rates in the protonated protein (A) and in the extensively deuterated protein (B). Open and filled bars represent 90° and 180° pulses, respectively. Relaxation delays are denoted by ΔT. N$_2$ indicates alignment of 15N polarization along the external field. In panel B, the constant time delay t was set to 60 ms and the phase cycle was $\phi_1 = (x,-x), \phi_2 = (y,y,-y,-y), \phi_3 = 8 \times (y), 8 \times (-y), \phi_4 = 16 \times (x), 16 \times (-x), \phi_{rot} = (x,-x,-x,x,x,-x,-x,x,x,-x,-x,x).$ All other notation follows common rules. The measurements were conducted on an 800 MHz spectrometer at an MAS rate of 20 kHz.](image)
respectively. During direct and indirect chemical shift evolution periods, SPINAL-64\(^{41}\) heteronuclear decoupling was applied on the \(^1\)H channel with an RF strength of 78 kHz. WALTZ-16\(^{42}\) with an RF field strength of 2.5 kHz was applied on the \(^15\)N channel during \(^13\)C detection to remove heteronuclear scalar couplings. During \(^15\)N indirect evolution, a hard 180° \(^13\)C pulse was used to suppress scalar couplings. The temperature of the protonated sample was set to 4 ± 3 °C.

Fig. 1B represents the pulse sequence for longitudinal relaxation measurements in the deuterated protein, adapted from previous...
Proton-detected 1H-15N 2D correlations were used to access site-specific relaxation data. Fourteen spectra were recorded with corresponding 15N relaxation delays D_T of 0, 4.5, 2, 0, 1, 7.5, 15, 0, 42, 0, 25, 0, 25, 0 s. All spectra were recorded with 16 scans. The initial 1H-15N CP transfer time was set to 1.1 ms, while 15N-1H back transfer was set to 0.38 ms. Average 15N and 1H RF fields were 51 and 71 kHz, respectively. During CP steps the proton RF field was ramped from the maximum power down to 80% or from 80% power up to the maximum, as indicated in Fig. 1B. Both 1H and 15N maximum acquisition times were 40 ms, but during processing 1H FIDs were truncated to 23 ms. During 15N evolution, HN J-couplings were removed by a WALTZ-16 scheme applied on the 1H channel with an RF strength of 3.5 kHz, and NC scalar couplings were suppressed by a train of 13C hard 180° pulses with phase cycling according to the XY-16 scheme and 2 ms interpulse delays. During proton detection, WALTZ-16 with an RF field strength of 3.5 kHz was applied on the 15N channel to remove scalar couplings. Constant time experimental design [44] and MISSISSIPPI [31] were used to minimize the water artefact. The temperature of the deuterated sample was set to 8.5 ± 2 °C.

3. Results and discussion

In order to quantify hydrogen exchange in a solid protein sample at equilibrium conditions, we followed the Relax-EXSY concept previously introduced in liquid state NMR by Lippens and coworkers [15]. Differences between apparent 15N T_1 relaxation rates measured in solvents with different D_2O fraction allow for the direct calculation of hydrogen-deuterium substitution rates. Practically, one has to measure apparent 15N longitudinal relaxation rates for two or more samples with different buffer D_2O contents. The protocol was applied to the Salmonella typhimurium T3SS needle. Identical 80-residue subunits make a right-handed helical assembly in form of a tube with ~ 80 Å outer diameter and 25 Å lumen diameter. The structure of the single monomer and the top and side view of the assembly are represented in Fig. 2. In the experiment depicted in Fig. 1B, initial amide proton magnetization is transferred to directly bound 15N by CP, while deuterium-bound nitrogens are considered not to be polarized. During the delay D_T, 15N magnetization aligned along the external magnetic field relaxes to its equilibrium due to protein motion. At the same time, amide protons bound to polarized nitrogens might be substituted by deuterons. After the subsequent NH CP step, magnetization of these nuclei is not observable with proton detection. This effect results in a decrease of the apparent T_1. Differences between the apparent T_1 obtained in this experiment and the real T_1 allow us to calculate the exchange rate. Real relaxation rates can be measured by employing the same experimental scheme for proteins in 100% H_2O buffer or via a carbon detected experiment, which is depicted in Fig. 1A. In the latter experiment, the hydrogen exchange does not influence observed T_1 at all and a sample with any buffer D_2O content can be used. In our measurements, real T_1 values were obtained on a fully protonated sample by the carbon detected experiment depicted in Fig. 1A.

The employed labeling schemes yield highly resolved and highly sensitive 2D HN and NCA correlations, depicted in Fig. 2. T_1 relaxation measurements conducted according to the pulse sequences presented in Fig. 1 show considerable variation in the apparent relaxation rates between protonated and deuterated samples, a consequence of the H/D exchange contribution. Protonated PrgI has a very long T_1 [45], which significantly exceeds values obtained on small microcrystalline proteins [38,43,46]. This can be explained by the extremely high rigidity of the T3SS needles. One can see well-pronounced site-to-site variations as well: T_1 becomes shorter in the termini and between residues 25 and 35. The apparent T_1 for the deuterated sample is considerably shorter, but in general reproduces the overall relaxation profile of

![Fig. 3. 15N apparent T_1 relaxation times along the primary sequence of PrgI T3SS needles. Results obtained on protonated and deuterated protein presented in red and black, respectively. Secondary structure elements are schematically depicted at the bottom. See Supporting Information (Table 1) for all numeric values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
but also during a number of small delays, whose sum is denoted \(k_{\text{HD}} \). The protonated sample. Residues in the termini show less \(T_1 \) differences compared to the deuterated sample. Initial \(N_H^0 \) magnetization was set to zero. In this case, the experimental data can be fitted with 5 parameters: exchange rate \(k_{\text{HD}}, R_{\text{ND}}^\beta, R_{\text{PD}}^\gamma \) and initial magnetization \(N_H^0 \) in each experimental series. We limited the ratio of \(R_{\text{PD}}^\gamma / R_{\text{ND}}^\beta \) to a quite broad interval between 0.05 and 5.0. Variations within this range have almost no effect on \(k_{\text{HD}} \) values, which was verified by additional fitting using different fixed \(R_{\text{PD}}^\gamma / R_{\text{ND}}^\beta \) ratios.

Fitting results are illustrated for serine-13 and valine-27 in Fig. 4. Despite very long real \(T_1 \), no chemical exchange was observed for serine-13, as one can see from the upper panel. Valine-27 clearly shows faster \(^{15}\text{N} \) magnetization decay in the deuterated sample, which is caused by H/D exchange.

Fig. 5 summarizes the extracted exchange rates as a function of residue position. All exchange rates are very slow and below 0.06 s\(^{-1}\).

The slow timescale accessible by this method is limited by the longitudinal relaxation rates of the nitrogens. If the \(^{15}\text{N} \) longitudinal relaxation times are significantly shorter than the H/D exchange time, the latter cannot be reliably quantified. Previous studies by Chevelkov et al. [50] compared \(^{15}\text{N} T_1 \) rates in protonated and deuterated \(\alpha \)-spectrin SH3 domain samples obtained on a 600 MHz spectrometer by carbon- and proton-detected experiments, respectively. The differences in relaxation times were too small to reliably quantify H/D exchange. Later, Reif and coworkers [33] obtained H/D exchange rates for just three amide sites in the \(\alpha \)-spectrin SH3 domain. All of these experiments demonstrated that H/D exchange is hardly accessible even for a small solid state model protein, mainly because \(^{15}\text{N} T_1 \) is not long enough to allow hydrogen-deuterium substitution. Due to this limitation, we conducted experiments at a high external magnetic field (800 MHz), in order to maximize \(^{15}\text{N} T_1 \) in SH3 [33], which clearly demonstrates the power of the RelaxEXSY approach. The obtained results demonstrate that H/D exchange in a solid state phase can be high enough to distort \(^{15}\text{N} \) \(T_1 \) measured in samples with a considerable fraction of D\(_2\)O in buffer.

4. Conclusion

We demonstrated that hydrogen-deuterium exchange of amide protons in solid state proteins can be reliably measured by MAS NMR at equilibrium conditions. The approach requires proton detection, which broadens the applicability of this technique in solid state NMR. In general, the method demonstrates the very high sensitivity achieved by a set of simple and straightforward experiments. The method applied to the PrgI T3SS needle protein yielded exchange rates for 40 residues and can be efficiently used to study the chemical exchange process in many biomolecules.

Acknowledgments

We thank Brigitta Angerstein for expert technical assistance. We thank Eve Ousby for valuable discussions. This work was supported by the Leibniz-Forschungsinstitut für Molekulare Phar-
makologie, the Max Planck Society, the European Research Council (ERC Starting Grant to A.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft; Emmy Noether Fellowship to A.L.).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jmr.2017.08.012.

References

Fig. 5. Exchange rate constant k_{HD} as a function of amino acid sequence of PrgI. See Supporting Information (Table 1) for all numeric values.

[45] F. Fricke, D. Mance, V. Chevelkov, K. Giller, S. Becker, M. Baldus, A. Lange, High resolution observed in 800 MHz DNP spectra of extremely rigid type III secretion needles, J. Biomol. NMR 1–6 (2016).

