Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Universal nanodroplet branches from confining the Ouzo effect

MPG-Autoren
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lu, Z., Schaarsberg, M. H. K., Zhu, X., Yeo, L. Y., Lohse, D., & Zhang, X. (2017). Universal nanodroplet branches from confining the Ouzo effect. Proceedings of the National Academy of Sciences of the United States of America, 114(39), 10332-10337. doi:10.1073/pnas.1704727114.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-16ED-6
Zusammenfassung
We report the self-organization of universal branching patterns of oil nanodroplets under the Ouzo effect [Vitale S, Katz J (2003) Langmuir 19: 4105-4110]-a phenomenon in which spontaneous droplet formation occurs upon dilution of an organic solution of oil with water. The mixing of the organic and aqueous phases is confined under a quasi-2D geometry. In a manner analogous to the ramification of ground stream networks [Devauchelle O, Petroff AP, Seybold HF, Rothman DH (2012) Proc Natl Acad Sci USA 109: 20832-20836 and Cohen Y, et al. (2015) Proc Natl Acad Sci USA 112: 14132-14137] but on a scale 10 orders of magnitude smaller, the angles between the droplet branches are seen to exhibit remarkable universality, with a value around 74 degrees +/- 2 degrees, independent of the various control parameters of the process. Numerical simulations reveal that these nanodroplet branching patterns are governed by the interplay between the local concentration gradient, diffusion, and collective interactions. We further demonstrate the ability of the local concentration gradient to drive autonomous motion of colloidal particles in the highly confined space, and the possibility of using the nucleated nanodroplets for nanoextraction of a hydrophobic solute. The understanding obtained from this work provides a basis for quantitatively understanding the complex dynamical aspects associated with the Ouzo effect. We expect that this will facilitate improved control in nanodroplet formation for many applications, spanning from the preparation of pharmaceutical polymeric carriers, to the formulation of cosmetics and insecticides, to the fabrication of nanostructured materials, to the concentration and separation of trace analytes in liquid-liquid microextraction.