English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance

MPS-Authors
/persons/resource/persons78437

Nagaraj,  Nagarjuna
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

939.full.pdf
(Publisher version), 3MB

Supplementary Material (public)

Tain_inline-supplementary-material-1.pdf
(Supplementary material), 3MB

Citation

Tain, L. S., Sehlke, R., Jain, C., Chokkalingam, M., Nagaraj, N., Essers, P., et al. (2017). A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance. Molecular Systems Biology, 13(9): 939. doi:10.15252/msb.20177663.


Cite as: https://hdl.handle.net/21.11116/0000-0000-77D5-A
Abstract
Lowered activity of the insulin/IGF signalling (IIS) network can ameliorate the effects of ageing in laboratory animals and, possibly, humans. Although transcriptome remodelling in long-lived IIS mutants has been extensively documented, the causal mechanisms contributing to extended lifespan, particularly in specific tissues, remain unclear. We have characterized the proteomes of four key insulin-sensitive tissues in a long-lived Drosophila IIS mutant and control, and detected 44% of the predicted proteome (6,085 proteins). Expression of ribosome-associated proteins in the fat body was reduced in the mutant, with a corresponding, tissue-specific reduction in translation. Expression of mitochondrial electron transport chain proteins in fat body was increased, leading to increased respiration, which was necessary for IIS-mediated lifespan extension, and alone sufficient to mediate it. Proteasomal subunits showed altered expression in IIS mutant gut, and gut-specific over-expression of the RPN6 proteasomal subunit, was sufficient to increase proteasomal activity and extend lifespan, whilst inhibition of proteasome activity abolished IIS-mediated longevity. Our study thus uncovered strikingly tissue-specific responses of cellular processes to lowered IIS acting in concert to ameliorate ageing.