MonoPerfCap: Human Performance Capture from Monocular Video

WEIPENG XU, AVISHEK CHATTERJEE, MICHAEL ZOLLIHÖFER, HELGE RHODIN, DUSHYANT MEHTA, HANS-PETER SEIDEL, CHRISTIAN THEOBALT, Max Planck Institute for Informatics

Fig. 1. We present the first marker-less approach for temporally coherent performance capture given just monocular video as input. The reconstructed surface model captures the full articulated motion of the human body as well as non-rigid deformations of the surface.

We present the first marker-less approach for temporally coherent 3D performance capture of a human with general clothing from monocular video. Our approach reconstructs articulated human skeleton motion as well as medium-scale non-rigid surface deformations in general scenes. Human performance capture is a challenging problem due to the large range of articulation, potentially fast motion, and considerable non-rigid deformations, even from multi-view data. Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem. We tackle these challenges by a novel approach that employs sparse 2D and 3D human pose detections from a convolutional neural network using a batch-based pose estimation strategy. Joint recovery of per-batch motion allows to resolve the ambiguities of the monocular reconstruction problem based on a low dimensional trajectory subspace. In addition, we propose refinement of the surface geometry based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrate state-of-the-art performance capture results that enable exciting applications such as video editing and free viewpoint video, previously infeasible from monocular video. Our qualitative and quantitative evaluation demonstrates that our approach significantly outperforms previous monocular methods in terms of accuracy, robustness and scene complexity that can be handled.

CCS Concepts: • Computing methodologies → Computer graphics: Motion capture;

Additional Key Words and Phrases: Monocular Performance Capture, 3D Pose Estimation, Human Body, Non-Rigid Surface Deformation

ACM Reference format:
https://doi.org/0000001.0000001_2
In this paper, we tackle the problem of human performance capture from monocular RGB video sequences, even outdoors with general background, to overcome the outlined limitations of depth cameras and multi-view setups. Reconstruction from monocular video per se is a highly challenging and ill-posed problem due to strong occlusions and the lack of depth information. Although several recent works target monocular tracking and reconstruction of specific, e.g., human faces [Garrido et al. 2016; Thies et al. 2016], and general [Garg et al. 2013; Russell et al. 2014; Yu et al. 2015] deformable surfaces, they only target objects undergoing relatively small deformations. To the best of our knowledge, our approach is the first to handle the problem of automatic 3D full human body performance capture from monocular video input. Similar to many existing performance capture approaches, ours employs an actor specific template mesh. The deformation of the template mesh, obtained by image-based reconstruction prior to recording, is parameterized with a kinematic skeleton and a medium-scale deformation field. Given this shape representation, we estimate the deformation of the actor for each frame in the input video, such that the deformed template closely matches the input frame. The resulting algorithm allows us to generate a temporally coherent surface representation of the actor’s full body performance.

In order to robustly capture the fast and highly articulated motion of the human body, we leverage 2D discriminative joint predictions from a convolutional neural network (CNN) as landmarks for registering the 3D skeleton to the image. However, due to the lack of explicit depth input, 3D pose estimation suffers from a “forward/backward flipping” ambiguity at the revolute joints [Sminchisescu and Triggs 2003b]. Therefore, the estimated 3D pose is often incorrect, even though the 2D projections of the skeleton joints accurately match the predictions. We tackle the flipping ambiguity with the help of a second CNN, which is trained to regress 3D joint positions from monocular images. To further resolve the inherent depth ambiguity of the monocular reconstruction problem, we constrain the 3D poses in temporal space with a low dimensional linear trajectory subspace, which has proven effective in the context of non-rigid structure from motion [Park et al. 2015]. In addition, we compute a non-rigid deformation field based on automatically extracted silhouettes to capture non-rigid surface deformation due to loose clothing, and accurately overlay the deformed template mesh onto the input image frames.

In summary, our monocular performance capture approach has the following main contributions:

- The first human 3D performance capture approach that relies only on monocular video input,
- a combination of discriminative 2D and 3D detections and batch-based motion optimization to solve the inherent flipping ambiguities of monocular 3D pose estimation,
- plausible recovery of non-rigid surface deformations with automatically extracted monocular silhouettes,
- a benchmark dataset consisting of 10 sequences, which covers a variety of different scenarios.

2 RELATED WORK

Performance capture has received considerable attention in computer vision and computer graphics. Here, we focus on the works that are most related to our approach.

Multi-view Performance Capture. Detailed surface geometry can be reconstructed using shape-from-silhouette and stereo constraints from multi-view video footage [Matusik et al. 2000; Starck and Hilton 2007; Waschbüsch et al. 2005; Zitnick et al. 2004], and based on photometric stereo in a light stage [Vlasic et al. 2009]. These model-free approaches require succeeding surface tracking to obtain temporal correspondence, e.g. using [Cagniart et al. 2010]. Reconstructions with temporally consistent topology are obtained with model-based solutions, that deform an actor specific shape template to match silhouette and multi-view constraints [Bradley et al. 2008; Carranza et al. 2003; De Aguiar et al. 2008; Wu et al. 2012]. Incorporation of a kinematic skeleton model further regularizes the solution [Gall et al. 2009; Liu et al. 2011; Vlasic et al. 2008] and combined reconstruction and segmentation further improves accuracy [Bray et al. 2006; Brox et al. 2006, 2010; Liu et al. 2011; Mustafa et al. 2015; Wu et al. 2013]. The required actor model can be computed fully automatically using parametric models [Anguelov et al. 2005; Balan et al. 2007; Hasler et al. 2010; Loper et al. 2014, 2015; Plöckners and Fua 2001; Smichishescu and Triggs 2003a; Song et al. 2016], also in general environments [Rhodin et al. 2016]. These methods obtain high quality under controlled studio conditions, often with a green screen, but they do not work in general outdoor scenarios and the utilized multi-view and stereo constraints do not generalize to performance capture from a single consumer-level camera.

Depth-based Performance Capture. Modern RGB-D sensors simultaneously capture synchronized color and depth at real-time frame rates. This triggered the development of depth-based reconstruction approaches fitting articulated template models [Bogo et al. 2015; Guo et al. 2015; Helten et al. 2013; Li et al. 2009; Zhang et al. 2014] that overcome many of the ambiguities of monocular RGB techniques. Even real-time template-based non-rigid tracking [Zollhöfer et al. 2014] and template-free reconstruction [Innmann et al. 2016; Newcombe et al. 2015; Xu et al. 2015] of general deforming scenes has been demonstrated. Multi-view depth-based reconstruction techniques obtain even higher accuracy and robustness [Collet et al. 2015; Dou et al. 2013, 2016; Wang et al. 2016; Ye et al. 2012]. While very reliable indoors, the active sensing modalities of consumer-level depth sensors hinder their application in direct sunlight, their high energy consumption is a drawback for mobile applications, and they are not yet as widely distributed as RGB cameras, which are already integrated in every smartphone. Passive stereo depth estimation helps to overcome some of these limitations [Plöckners and Fua 2001; Wu et al. 2013], but the required camera baseline is impractical for consumer-level applications and the quality of estimated depth is highly dependent on the amount of texture features in the reconstructed scene.

Sparse Skeletal Pose Reconstruction. We make use of current advances in skeleton pose estimation, in particular from single views to bootstrap our surface reconstruction approach. Motion capture solutions based on a generative image formation model require...

Promising are hybrid approaches that combine discriminative 2D-[Elhayek et al. 2015] and 3D-pose estimation techniques [Rosales and Sclaroff 2006; Sminchisescu et al. 2006] with generative image formation models, but these approaches require multiple views of the scene. Recently, a real-time 3D human pose estimation approach has been proposed [Mehta et al. 2017], which also relies on monocular video input. It is a very fast method, but does not achieve the temporal stability and robustness to difficult poses of our approach. In contrast to this previous work, our method not only estimates the 3D skeleton more robustly, by leveraging the complimentary strength of 2D and 3D discriminative models, and trajectory subspace constraint, but also recovers the non-rigid surface deformations that can not be modeled using only skeleton subspace deformation. We extensively compare to the approach of [Mehta et al. 2017] in Sec. 6.

Dense Monocular Shape Reconstruction. Reconstructing strongly deforming non-rigid objects and humans in general apparel given just monocular input is an ill-posed problem. By constraining the solution to a low-dimensional space, coarse human shape can be reconstructed based on a foreground segmentation [Chen et al. 2010; Grest et al. 2005; Guan et al. 2009; Jain et al. 2010; Rogge et al. 2014; Zhou et al. 2010]. Still, these approaches rely on manual initialization and correction steps. Fully automatic approaches combine generative body models with discriminative pose and shape estimation, e.g. conditioned on silhouette cues [Sigal et al. 2007] and 2D pose [Bogo et al. 2016], but can also only capture skin-tight clothing without surface details. Model-free reconstructions are based on rigidity and temporal smoothness assumptions [Garg et al. 2013; Russell et al. 2014] and only apply to medium-scale deformations and simple motions. Template-based approaches enable fast sequential tracking [Bartoli et al. 2015; Salzmann and Fua 2011; Yu et al. 2015], but are unable to capture the fast and highly articulated motion of the human body. Automatic monocular performance capture of more general human motion is still an unsolved problem, especially if non-rigid surface deformations are taken into account. Our approach tackles this challenging problem.

3 METHOD OVERVIEW

Non-rigid 3D reconstruction from monocular RGB video is a challenging and ill-posed problem, since the subjects are partially visible at each time instance and depth cues are implicit. To tackle the problem of partial visibility, similar to many previous works, we employ a template mesh, pre-acquired by image based monocular reconstruction of the actor in a static pose. When it comes to the scenario of capturing the full motion of a human body, the problem is even more challenging, due to the high degree of non-rigidity of humans, ranging from complex articulated motion to non-rigid deformations of skin and apparel. We propose the first marker-less
performance capture approach for temporally coherent reconstruction of 3D articulated human motion as well as 3D medium-scale surface deformations from just monocular videos recorded outside controlled studios. To this end, we parameterize human motion based on a two level deformation hierarchy. On the coarser level, the articulated motion is captured in skeleton deformation space. On the finer level, a deformation field parameterized by an embedded deformation graph, models medium-scale non-rigid deformations of the surface. Correspondingly, motion capture is also performed in a coarse-to-fine manner, based on two subsequent steps, namely batch-based pose estimation (see Sec. 4) and silhouette-based refinement (see Sec. 5). As shown in Fig. 2, we first estimate the skeleton deformations in the input video, using a novel batch-based 3D pose estimation approach that exploits the discriminative 2D and 3D detections from trained CNNs and a linear trajectory subspace to obtain robust reconstruction. The resulting temporally coherent reconstructions well reproduce articulated motion, but lack non-rigid surface deformations of the apparel and skin. Consequently, there exist noticeable misalignments between the skeleton-deformed model boundary and the image silhouette. To alleviate this problem, we propose a surface refinement approach to better align the deformed model with automatically estimated actor silhouettes that are found by a model-guided foreground segmentation strategy (see Sec. 5.1).

To obtain the person-specific template mesh, we first record a high-resolution video with a handheld camera orbiting around the actor standing in a T-pose, and uniformly sample 60 images. Afterwards, a triangulated surface with the corresponding texture is automatically reconstructed using the image based reconstruction software Agisoft Photoscan\(^1\). The subsequently explained skinning weight assignment is the only manual step.

4 BATCH-BASED 3D HUMAN POSE ESTIMATION

We parameterize articulated human motion based on a low dimensional skeleton subspace [Lewis et al. 2000]. The skeleton \( S = \{ t, R, \Theta \} \) with \( N_d = 16 \) joints \( J_i \) is parameterized by the position \( t \in \mathbb{R}^3 \) and rotation \( R \in \text{SO}(3) \) of its root joint, and 27 angles stacked in \( \Theta \in \mathbb{R}^{27} \). This leads to a 33 dimensional deformation subspace. The high-resolution actor mesh is rigged to the skeleton based on dual quaternion skinning [Kavan et al. 2007].

The skinning weights of our templates are automatically computed in Blender. For the skirt and long coat templates, we manually correct the skinning weights to reduce artifacts.

Given the monocular input video \( V = \{ I_f \}_{f=1}^N \) with \( N \) image frames \( I_f \), the goal of 3D pose estimation is to recover the skeleton parameters \( S_f \) for all input frames. Since the problem of 3D human pose estimation is highly underconstrained given only a single RGB input frame \( I_f \), we propose a novel batch-based approach that jointly recovers the motion for a continuous window in time:

\[
B = \{ S_f | f_{\text{start}} \leq f \leq f_{\text{end}} \} , \tag{1}
\]

where \( f_{\text{start}} \) specifies the index of the first and \( f_{\text{end}} \) of the last frame included in the current batch. In all our experiments, a constant batch size \( |B| = 50 \) is used, and the input video is partitioned into a series of overlapping batches (10 frames overlap). Each batch is processed independently and afterwards the per-batch skeleton reconstruction results are combined in the overlap region based on a linear blending function.

We phrase the problem of estimating the articulated motion of each batch \( B \) as a constrained optimization problem:

\[
B^* = \arg \min_B E_{\text{pose}}(B) , \text{ subject to } \Theta_{\text{min}} \leq \Theta_f \leq \Theta_{\text{max}} , \forall f \in [f_{\text{start}}, f_{\text{end}}] , \tag{2}
\]

where the hard constraints on the per-frame joint angles \( \Theta_f \) are physically motivated and ensure the reconstruction of plausible human body poses by forcing the joint angles to stay inside their anatomical lower \( \Theta_{\text{min}} \) and upper \( \Theta_{\text{max}} \) bounds [Stoll et al. 2011].

The proposed batch-based pose estimation objective function \( E_{\text{pose}} \) consists of several data fitting and regularization terms:

\[
E_{\text{pose}}(B) = E_{\text{2d}}(B) + w_{\text{2d}} E_{\text{3d}}(B) + w_{\text{3d}} E_{\text{1d}}(B) . \tag{3}
\]

The data fitting terms ensure that the reconstructed motion closely matches the input: A 2D joint alignment term \( E_{\text{2d}} \) based on joint detections in image space and a 3D joint alignment term \( E_{\text{3d}} \) based on regressed 3D joint positions. The discriminative detections are obtained using CNNs that have been trained for 2D and 3D joint localization. The motion of the skeleton is regularized on batch level by \( E_{\text{1d}} \) using a low dimensional trajectory subspace based on the discrete cosine transform. This enforces the intra-batch motion to be temporally smooth, adds robustness against failed detections and further resolves depth ambiguity. The weights \( w \) balance the relative importance of the different terms. We provide more details in the remaining part of this section.

Discriminative Joint Alignment Terms. For each input image \( I_f \) and each of the \( N_d = 16 \) joints \( J_i \) we estimate the 2D joint position \( \mathbf{d}_{f,i}^{\text{2d}} \) in image space and the 3D joint position \( \mathbf{d}_{f,i}^{\text{3d}} \). To this end, we use the Resnet [He et al. 2016] based CNN joint position regression method of [Mehta et al. 2016], to which we add detections for the toes. This better constrains the rotation of the feet and leads to higher quality reconstruction results. Our 2D pose network is trained on the MPII Human Pose [Andriluka et al. 2014] and LSP [Johnson and Everingham 2011] datasets, and the 3D pose network is fine-tuned from the 2D pose network on the H3.6M [Ionescu et al. 2014] and 3DHP [Mehta et al. 2016] datasets. Our approach lifts the loose CNN detections to produce a coherent skeleton (parameterized by angles) and enforces constant bone length. In contrast to previous works, e.g. the 2D-to-3D lifting approach of [Zhou et al. 2015], we incorporate both 2D and 3D constraints into our generative framework to allow for more robust pose estimation. Our 2D joint alignment term is a re-projection constraint enforcing that the projected joint positions \( \mathbf{J}(S_f) \) closely match the corresponding 2D detections \( \mathbf{d}_{f,i}^{\text{2d}} \):

\[
E_{\text{2d}}(B) = \frac{1}{|B|} \sum_{S_f \in B} \frac{1}{N_d} \sum_{i=1}^{N_d} \| \mathbf{J}(S_f) - \mathbf{d}_{f,i}^{\text{2d}} \|_2^2 , \tag{4}
\]

\(^1\)http://www.agisoft.com
where the mapping $\Pi: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ implements the full perspective camera projection. We apply this constraint independently for every frame of $\mathcal{B}$. In addition, we propose a 3D joint alignment term based on the regressed 3D joint positions $d_{f,i}^{3d}$:

$$E_{3d}(\mathcal{B}) = \frac{1}{|\mathcal{B}|} \sum_{S_f \in \mathcal{B}} \frac{w_f}{|\mathcal{N}_d|} \sum_{i=1}^{N_d} \| f(S_f) - (d_{f,i}^{3d} + t_f) \|^2_2.$$  

(5)

Since the 3D joint detections $d_{f,i}^{3d}$ are normalized for a skeleton with average bone length and are predicted relative to the root joint, rather than in camera space, they have to be rescaled to match the actor model, and mapped to their corresponding camera space position based on an unknown per-frame global translation $t_f$. In order to prune frames with low 3D detection confidence, we measure the per-frame PCK error [Toshev and Szegedy 2014]

$$PCK(t) = \frac{1}{|\mathcal{N}_d|} \sum_{i=1}^{N_d} \frac{\min(\| f(S_f) - (d_{f,i}^{3d} + t_f) \|_2, \delta))}{\| f(S_f) - \bar{f} \|_2},$$  

(6)

where $\delta = 0.4$ is an empirically determined, but constant, distance threshold. Note, the 2D detections are always included in the optimization, since they have a higher reliability.

**Batch-based Motion Regularization.** Up to now, all poses $S_f$ are temporally independent and sometimes inaccurate, since the monocular reconstruction problem is highly underconstrained. To alleviate this problem, we impose temporal smoothness by forcing the trajectory of each skeleton parameter to lie on a low dimensional linear subspace. Specifically, we couple all pose estimates $S_f \in \mathcal{B}$ by minimizing the distance to a $K = 8$ dimensional linear subspace

$$\mathcal{DCT} \in \mathbb{R}^{K \times |\mathcal{B}|}$$  

spanned by the $K$ lowest frequency basis vectors of the discrete cosine transform (DCT):

$$E_d(\mathcal{B}) = \frac{1}{|\mathcal{B}|} \| \mathbf{A} S_{\mathcal{B}} \mathbf{Null(DCT)} \|_F^2.$$  

(7)

Here, $\mathbf{Null(DCT)}$ denotes the nullspace of the DCT matrix, and the matrix $S_{\mathcal{B}}$ stacks all parameters $S_f$ of the current batch:

$$S_{\mathcal{B}} = \left[ S_{f_{\text{start}}} , \ldots , S_{f_{\text{end}}} \right] \in \mathbb{R}^{[S_{\mathcal{B}} \times |\mathcal{B}|]}.$$  

(8)

The diagonal matrix $\Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$ balances the motion smoothness of the global translation, rotation and joint angle components. In all our experiments, $\lambda_1 = 1 \cdot \mathbf{1}_3$, $\lambda_2 = 600 \cdot \mathbf{1}_3$, and $\lambda_3 = 600 \cdot \mathbf{1}_{27}$, where $\mathbf{1}_k$ is the $k$-dimensional row vector of ones. $\| \cdot \|_F$ denotes the Frobenius norm.

**Initialization and Optimization.** The optimization problem in Eq. 2 is non-linear due to the involved camera projection and the hierarchical parameterization of articulated motion based on joint angles. We solve this constrained non-linear least square optimization problem using the Levenberg Marquardt (LM) algorithm provided by Ceres\footnote{http://ceres-solver.org}.

Since the optimization problem is non-convex, LM requires an initialization close to the global optimum for convergence. To this end, we resort to a per-frame initialization strategy by finding the $S_f$ that minimize a joint alignment energy function $E_{2d} + E_{3d}$.

### 5 Silhouette-Based Refinement

As mentioned before, our batch-based pose optimization does not capture non-rigid surface deformation due to apparel and skin, and thus leads to misalignments between the skeleton-deformed template mesh and the input images, particularly at the boundaries. To alleviate this problem, we propose a pose and surface refinement method based on automatically extracted silhouettes.

#### 5.1 Automatic Silhouette Extraction

Given an input frame $I_f$, we estimate the silhouette of the actor through a foreground segmentation method based on GrabCut [Rother et al. 2004]. GrabCut requires a user-specified initialization $T = \{ T_k, T_{ub}, T_{inf}, T_f \}$, where $T_f$ and $T_k$ denote the known foreground and background masks and the segmentation is computed over the remaining uncertain foreground $T_{inf}$ and background $T_{ub}$ regions. The original GrabCut interactively initializes the masks based on a user-specified bounding box $\mathcal{B}$ and sets $T_{ub} = \mathcal{B}$, $T_k = \overline{\mathcal{B}}$, and $T_f = \emptyset$. In contrast, we propose a fully automatic initialization strategy for $T$ based on the skeleton parameters $S_f$ obtained by our batch-based pose estimation. To this end, we first rasterize the skeleton and the deformed dense actor template $V(S_f)$ to obtain two masks $\mathcal{R}$ and $\mathcal{M}$ respectively. Then we set the masks $T$ as follows:

$$T_f = R \cup \text{erosion}(\mathcal{M}),$$

$$T_k = \text{dilation}(\mathcal{M}),$$

$$T_{inf} = M - T_f,$$

$$T_{ub} = \text{dilation}(\mathcal{M}) - M,$$

(9)

where $\text{erosion}()$ and $\text{dilation}()$ denote the image erosion and dilation operator. In Fig. 4 (Initialization Mask), the masks $(T_k, T_{ub}, T_{inf}, T_f)$ are illustrated in red, blue, yellow and green.

To improve the robustness of our segmentation method, we extend the original GrabCut objective function, by incorporating motion cues. Specifically, we extract the temporal per-pixel color gradients between adjacent frames and encourage neighboring pixels with small temporal gradients to belong to the same region. As shown in Fig. 4, our model-based strategy and the extension with
motion cues lead to fully automatic and significantly improved segmentation.

5.2 Silhouette-based Pose Refinement

Our silhouette-based pose refinement is performed in an Iterative Closest Point (ICP) manner. In an ICP iteration, for each boundary point of the projected surface model, we search for its closest point on the image silhouette that shares a similar normal direction. Then we refine the pose by solving the following non-linear least squares optimization problem:

\[
E_{\text{ref}}(S_f) = E_{\text{con}}(S_f) + w_{\text{stab}}E_{\text{stab}}(S_f),
\]

where \(E_{\text{con}}\) aligns the mesh boundary with the input silhouette, \(E_{\text{stab}}\) constrains the solution to stay close to the batch-based results and \(w_{\text{stab}}\) balances the importance of the two terms. We initialize the iterative pose refinement with the batch-based pose estimates, and typically perform 3 iterations.

Silhouette Alignment Constraint. The closeness of corresponding points is enforced as follows:

\[
E_{\text{con}}(S_f) = \frac{1}{|S|} \sum_{k \in S} \left\| n^T_k \cdot \left( \Pi(v_k(S_f)) - s_k \right) \right\|^2,
\]

where \(S\) is the boundary of the actor model, \(v_k\) the position of vertex \(k\) and \(s_k \in \mathbb{R}^2\) the corresponding silhouette point in the image with 2D normal \(n_k\).

Pose Stabilization Constraint. We enforce the refined skeleton pose to be close to its initialization based on the following soft-constraint:

\[
E_{\text{stab}}(S_f) = \frac{1}{N_d} \sum_{i=1}^{N_d} \left\| J_i(S_f) - J_i(\hat{S}_f) \right\|^2,
\]

where \(\hat{S}_f\) are the joint angles after batch-based pose estimation and \(J_i(\cdot)\) computes the 3D position of joint \(i\).

After the iterative pose refinement, we perform the silhouette extraction of Sec. 5.1 for a second time, to further improve the segmentation. As shown in Fig. 5, our iterative pose refinement not only improves the pose estimates, but also significantly increases the precision of the silhouette segmentation, which allows for the more accurate non-rigid surface alignment of Sec. 5.3.

5.3 Silhouette-based Non-Rigid Surface Refinement

Given the silhouette segmentation improved by iterative pose refinement, we perform a surface refinement step based on a medium-scale deformation field to closely align the model to the extracted image silhouettes. This captures the non-rigid surface deformations of apparel and skin that are visible in the silhouette outline. Refinement of the interior is hard due to a potential lack of strong photometric cues.

We parameterize the medium-scale warp field on an exponential distance falloff and make them a partition of the influence of vertex \(i\) on an exponential distance falloff and make them a partition of

\[
W_i(x) = R_i(x - \hat{g}_i) + \hat{g}_i + t_i, \quad \text{(13)}
\]

where \(\hat{g}_i \in \mathbb{R}^3\) is the canonical position of node \(i\), computed with the result of the pose refinement. We refer to the graph and its associated degrees of freedom as:

\[
D = \{|(R_i, t_i)| i \in [0, M] \}. \quad \text{(14)}
\]

We apply the medium-scale deformation field on the dense actor model by linear blending of the per-node warp fields:

\[
v_i = W(\hat{v}_i) = \sum_{k \in F_i} b_{i,k}(x) \cdot W_k(\hat{v}_i). \quad \text{(15)}
\]

Here, \(v_i \in \mathbb{R}^3\) is the deformed vertex position, \(\hat{v}_i \in \mathbb{R}^3\) is the canonical position of vertex \(i\) and \(F_i\) is the set of deformation nodes that influence vertex \(i\). We compute the blending weights \(b_{i,k}\) based on an exponential distance falloff and make them a partition of unity.

Given the embedded deformation graph, our silhouette-based surface refinement is expressed as the following optimization problem:

\[
E_{\text{surf}}(D) = E_{\text{con}}(D) + w_{\text{arap}}E_{\text{arap}}(D). \quad \text{(16)}
\]

Here, \(E_{\text{con}}\) is the silhouette alignment term, \(E_{\text{arap}}\) an as-rigid-as-possible regularization term \cite{SorkineAlexa2007} and \(w_{\text{arap}}\) balances the two terms.

Our silhouette alignment term \(E_{\text{con}}\) encourages the actor model to tightly align with the input silhouette:

\[
E_{\text{con}}(D) = \frac{1}{|S|} \sum_{k \in S} \left\| n^T_k \cdot \left( \Pi(v_k(D)) - s_k \right) \right\|^2, \quad \text{(17)}
\]

where \(S\) is the model silhouette, \(v_k\) the position of vertex \(k\) and \(s_k \in \mathbb{R}^2\) its corresponding silhouette point with normal \(n_k \in \mathbb{R}^2\).

The as-rigid-as-possible term regularizes the non-rigid surface deformation of the graph nodes:

\[
E_{\text{arap}}(D) = \frac{1}{M} \sum_{i=1}^{M} \sum_{j \in N_i} \left\| (g_{ij} - g_i) - R_i(\hat{g}_i - \hat{g}_j) \right\|^2. \quad \text{(18)}
\]

Here, \(g_{ij} = W_i(\hat{g}_j)\) is the deformed position of node \(\hat{g}_j\) and \(N_i\) is its 1-ring neighbourhood.
with a second camera as a reference view, and calibrated the extrinsic parameters for both cameras. We also provide manually labeled silhouettes for each frame of the video sequences, which are used to compute silhouette overlap as a metric for quantitative evaluation. The two sequences provide accurate surface reconstruction from multiview images, which can be used as ground truth for quantitative evaluation. The benchmark dataset and our performance capture results will be made publicly available.

In all experiments, we use the following empirically determined parameters to instantiate our energy functions: $w_{2d} = 0.1$, $w_p = 0.1$, $w_p = 50$, $w_{stab} = 0.06$, and $w_{warp}$ is set to 0.6 and 0.2 for the two ICP iterations respectively. Our approach proved robust to the specific choice of parameters, and thus we use this fixed set in all experiments. We performed all experiments on a desktop computer with a 3.6GHz Intel Xeon E5-1650 processor. Our unoptimized CPU code requires approximately 1.2 minutes to process one input frame. This divides into 10 seconds for batch-based pose estimation and 1 minute for surface refinement. We believe that the runtime of our approach can be greatly improved based on recent progress in data-parallel optimization [Zollhöfer et al. 2014]. In the remaining part of this section, we first present our qualitative results, then evaluate all components of our approach, and finally compare to state-of-the-art monocular and multi-view approaches quantitatively.

6 RESULTS
To evaluate our monocular performance capture approach for a variety of scenarios, we propose a benchmark dataset consisting of 10 video sequences. We captured 8 video sequences at 30Hz, which cover a variety of different scenarios including indoor and outdoor settings, handheld and static cameras, natural and man-made environments, male and female subjects, as well as tight and loose garments. In order to evaluate our results in a different view from the one used as input, we also captured a side view for each sequence with a second camera as a reference view, and calibrated the extrinsic parameters for both cameras. We also provide manually labeled silhouettes for each frame of the 8 video sequences, which are used to compute silhouette overlap as a metric for quantitative evaluation of the performance capture results. In addition, we included two sequences from prior works, [Robertini et al. 2016] and [Wu et al. 2013], in our benchmark dataset. These two sequences provide accurate surface reconstruction from multiview images, which can be used as ground truth for quantitative evaluation. The benchmark dataset and our performance capture results will be made publicly available.

Our approach accurately captures the performance of the actors and obtains temporally coherent results on all test sequences, even for challenging motions with 360 degrees of rotation and sitting down on a sofa. Even continuous interactions with objects, e.g., the basketball, is allowed. To the best of our knowledge, no previous monocular approach could handle such scenarios. As shown in Fig. 9, from the reference view, in spite of a small offset between the projected meshes and the actor due to some ambiguities in monocular depth estimation, our approach is able to accurately recover the full 3D deforming pose and the shape of the actor. The textured spatio-temporal reconstructions are the basis for free-viewpoint videos and can be rendered from arbitrary viewpoints, see Fig. 8 (right).

Our reconstructed models also allow us to employ shading-based refinement using estimated lighting [Wu et al. 2013] to recover fine-scale surface detail, see Fig. 6, but this is not the focus of our work.

Furthermore, one of the sequences in our benchmark dataset is captured with a handheld camera, demonstrating the effectiveness of our approach even for non-static cameras.

6.1 Qualitative Results
Our qualitative results are shown in Fig. 8. We refer to the accompanying video for the complete results on our entire benchmark dataset.

Our approach accurately captures the performance of the actors and obtains temporally coherent results on all test sequences, even for challenging motions with 360 degrees of rotation and sitting down on a sofa. Even continuous interactions with objects, e.g., the basketball, is allowed. To the best of our knowledge, no previous monocular approach could handle such scenarios. As shown in Fig. 9, from the reference view, in spite of a small offset between the projected meshes and the actor due to some ambiguities in monocular depth estimation, our approach is able to accurately recover the full 3D deforming pose and the shape of the actor. The textured spatio-temporal reconstructions are the basis for free-viewpoint videos and can be rendered from arbitrary viewpoints, see Fig. 8 (right).

Our reconstructed models also allow us to employ shading-based refinement using estimated lighting [Wu et al. 2013] to recover fine-scale surface detail, see Fig. 6, but this is not the focus of our work.

Furthermore, one of the sequences in our benchmark dataset is captured with a handheld camera, demonstrating the effectiveness of our approach even for non-static cameras.

6.2 Evaluation of Algorithmic Components
The three main steps of our approach are: Frame-to-frame 3D skeleton pose initialization based on the 2D/3D predictions ($E_{2d} + E_{3d}$), batch-based pose estimation ($E_{pose}$) and silhouette-based pose and surface refinement ($E_{refine}$). We demonstrate the importance of all steps by comparing the results qualitatively in Fig. 7. While the joint detection based initialization ($E_{2d} + E_{3d}$) yields plausible results, the following batch-based pose estimation step ($E_{pose}$), which exploits temporal smoothness, improves the overlay and also removes the temporal jitter of the temporally incoherent 2D/3D CNN joint
Fig. 8. Qualitative Results: We demonstrate compelling monocular performance capture results on a large variety of challenging scenes (left) that span indoor and outdoor settings, natural and man-made environments, male and female subjects, as well as tight and loose garments. Our reconstructions match the real world even when viewed from the side. Note, the side views are just used for reference, and are not used as input to our approach. The reconstructions obtained by our approach are the basis for free-viewpoint video (right). For more results on our benchmark dataset we refer to the accompanying video.

detections (see the accompanying video). Note, in contrast to our coherent skeletal pose reconstruction, the CNN joint detections do not enforce a temporally constant bone length. Furthermore, our silhouette-based refinement step, which produces our final results, significantly improves the overlay. In addition, we also quantitatively evaluate the contribution of each component. To this end, we made use of the multi-view performance capture method described in [Robertini et al. 2016], which has demonstrated convincing results in capturing both pose and surface deformations in outdoor scenes. We select a single view of one of their multi-view sequences (Pablo sequence) as a test set, and use their results as ground truth for quantitative evaluation. As shown in Fig. 10 (average errors are given in the legend), our three main steps gradually improve the per-frame surface-to-surface mean error, while the complete
Fig. 9. Despite a small depth offset between the reconstruction and the actor in the reference view (not used for tracking) due to the remaining monocular depth ambiguity, our approach is able to accurately recover the deforming pose and shape.

Fig. 10. Quantitative evaluation of components: All steps of our approach improve the surface reconstruction error (in millimeters). The average error (AE) over all frames is given in the legend. The approach $E_{\text{refine}}$ has the lowest error over almost all frames. Note that, for this evaluation, we aligned the reconstruction to the ground truth with a translation to eliminate the global depth offsets shown in Fig. 9.

6.3 Comparisons

Comparison to Monocular Non-rigid Reconstruction. In Fig. 12, we provide a qualitative comparison between our approach and the template-based dense monocular non-rigid reconstruction method of [Yu et al. 2015] in terms of the full reconstructed surface. Their method fails to track the actor motion within a few frames, and is not able to recover afterwards, while our method constantly yields accurate tracking results throughout the entire sequence. Note that the approach of [Yu et al. 2015] does not rely on a skeleton, and therefore can be applied to general shapes. However, this comparison confirms the benefits of our shape representation in the specific task of human performance capture. In addition, we perform a qualitative and quantitative comparison on the Pablo sequence. As shown in Fig. 11, the tracking performance of our monocular approach is very close to the multi-view approach of [Robertini et al. 2016] that uses 8 cameras and drastically outperforms the template based monocular approach of [Yu et al. 2015]. In addition, our approach consistently outperforms theirs in terms of mean vertex error compared to the multi-view reconstructions of [Robertini et al. 2016], see Fig. 13.

Comparison to Monocular 3D Joint Estimation. We also quantitatively compare our batch-based pose estimation method $E_{\text{pose}}$ to the state-of-the-art real-time 3D skeleton tracker of [Mehta et al. 2017] and the 2D-to-3D lifting approach of [Zhou et al. 2016b]. We first compare on the basis of joint positions, as the other methods do not reconstruct a deformable surface model. The ground truth joint locations for this evaluation are provided by the professional multi-view marker-less motion capture software CapturyStudio. We evaluate the average per-joint 3D error (in millimeters) after similarity transformation for each frame of the Pablo sequence. As shown in Fig. 14 (average errors are given in the legend), our batch-based approach that uses 2D and 3D pose detections and fits joint angles of a coherent skeleton model obtains consistently lower errors than theirs. This lower error in 3D joint positions translates into higher quality and temporally more stable reconstructions. To

---

Fig. 11. Qualitative shape comparison on the Pablo sequence. Our approach obtains comparable quality as the multi-view approach of [Robertini et al. 2016] (8 cameras) and drastically outperforms the template-based monocular tracking approach of [Yu et al. 2015]. In comparison to rigging the template model with respect to the 3D pose estimation results of [Mehta et al. 2017] and [Zhou et al. 2016b], our approach yield more accurate results with less artifacts that better overlay with the input.

Fig. 14. Average per-joint 3D error (in millimeters) after similarity transformation for each frame of the Pablo sequence.
Fig. 12. Qualitative shape comparison between our approach and the template-based monocular non-rigid tracking approach of [Yu et al. 2015]. Our approach is able to reconstruct the motion of the complete sequence, while [Yu et al. 2015] fails after a few frames. In comparison to rigging the template model with respect to the 3D pose estimation results of [Mehta et al. 2017] and [Zhou et al. 2016b], our results are temporally more stable, of higher quality and better overlay with the input. See the accompanying video for more comparisons.

Fig. 13. Quantitative shape comparison on the Pablo sequence. Our approach outperforms the template-based tracking approach of [Yu et al. 2015] and rigging the template model with respect to the 3D pose estimation results of [Mehta et al. 2017] and [Zhou et al. 2016b]. The average error (AE) in millimeters is given in the legend.

Further compare our method against the baseline monocular 3D joint estimation methods on surface level, we rigged our template to the pose estimation results of [Mehta et al. 2017] and [Zhou et al. 2016b]. Naive rigging exhibits surface artifacts, as shown in Fig. 12 and Fig. 11, while our approach yields smooth results and improved surface reconstruction quality. For quantitative comparison, we compute the silhouette overlap accuracy (Intersection over Union, IoU) on the sequence shown in Fig. 12, based on manually labeled ground truth silhouettes. As shown in Fig. 15, benefiting from our batch-based optimization, our pose estimation consistently outperforms previous state-of-the-art methods, while our surface refinement further significantly improves the overlap accuracy. Furthermore, Fig. 13 quantitatively shows that our approach outperforms the baseline methods in terms of per-vertex surface reconstruction error. For more comparisons, we refer to the accompanying video.

Comparison to Stereo Performance Capture. We further compare to the stereo-based performance capture approach of [Wu et al. 2013] on one of their stereo sequences. This approach leverages explicit depth cues based on binocular stereo and yields high-quality performance capture results. For comparison, we selected a single camera view (the left camera) to obtain the monocular input video for our
Fig. 16. Qualitative comparison to the binocular stereo performance capture approach of [Wu et al. 2013]. Our monocular approach obtains comparable quality results without requiring explicit depth cues. The per-vertex differences are color coded in the last row. Note, we do not employ full BRDF-based shading-based refinement to obtain smoother results.

Fig. 17. Strong occlusion and fast motion can lead to tracking failure, but our approach is able to instantly recover as soon as the occluded parts become visible again.

7 LIMITATIONS
We have demonstrated compelling performance capture results given just monocular video input. Nevertheless our approach is subject to the following limitations, which can be addressed in future work: 1) Currently, our approach, similar to previous performance capture approaches, requires a person-specific actor rig built in a pre-processing step. However, note that our template can be automatically generated from a video following a circular path around the static actor, which can be recorded within only half a minute. After this pre-process, our approach is fully automatic. The automatic extraction of such a rig from a monocular video sequence containing general motion is currently an unsolved problem, but first progress given only a sparse set of views [Bogo et al. 2016; Rhodin et al. 2016] has been made. 2) Strong occlusion in combination with fast motion can still lead to tracking failure in our extremely challenging monocular setting. Especially end effectors, i.e. the lower part of the legs or the feet, are often completely occluded for general motions and hence are hard to track robustly. Nevertheless, our approach is able to instantly recover due to the discriminative joint detections as soon as the occluded parts become visible again, see Fig. 17. We would like to remind the reader of the profound difficulty of the monocular reconstruction setting. Despite several remaining limitations, we believe to have taken an important step in monocular performance capture that will inspire follow-up works.

8 CONCLUSION
We have presented the first approach for automatic temporally coherent marker-less human performance capture from a monocular video. The ambiguities of the underconstrained monocular reconstruction problem are tackled by leveraging sparse 2D and 3D joint detections and a low dimensional motion prior in a joint optimization problem over a batch of frames. The tracked surface geometry is refined based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrated compelling monocular reconstruction results that enable exciting applications such as video editing and free viewpoint video previously impossible from single RGB video.

We believe our approach is a significant step to make marker-less monocular performance capture viable. In the future, a further improved and real-time solution to this challenging problem would have big implications for a broad range of applications in not only computer animation, visual effects and free-viewpoint video, but also other fields such as medicine or biomechanics.

REFERENCES


