English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!DetailsSummary

Discarded

Journal Article

Selinene volatiles are essential precursors for maize defenses mediating fungal pathogen resistance

MPS-Authors
/persons/resource/persons3982

Köllner,  Tobias G.
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ding, Y., Huffaker, A., Köllner, T. G., Weckwerth, P., Robert, C. A., Spencer, J. L., et al. (2017). Selinene volatiles are essential precursors for maize defenses mediating fungal pathogen resistance. Plant Physiology, 175(2). doi:10.1104/pp.17.00879.


Abstract
To ensure food security, maize (Zea mays) is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand below-ground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile β-selinene and the corresponding non-volatile antibiotic derivative, β-costic acid. The application of metabolite-based quantitative trait loci (mQTL) mapping using bi-parental populations, genome wide association studies, and near-isogenic lines (NILs) enabled the identification of terpene synthase 21 (ZmTps21) on chromosome 9 as a β-costic acid pathway candidate gene. Numerous closely examined β-costic acid deficient inbred lines were found to harbor Zmtps21 pseudo genes lacking conserved motifs required for farnesyl diphosphate (FPP) cyclase activity. For biochemical validation, a full length ZmTps21 was cloned, heterologously expressed in E. coli and demonstrated to cyclize FPP yielding β-selinene as the dominant product. Consistent with microbial defense pathways, ZmTps21 transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional ZmTps21 alleles displayed β-costic acid levels over 100 μg g-1 FW, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (Diabrotica balteata). In vivo disease resistance assays, using ZmTps21 and Zmtps21 NILs, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of non-volatile antibiotics, ZmTps21 exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.