English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The influence of deep convection on HCHO and H2O2 in the upper troposphere over Europe

MPS-Authors
/persons/resource/persons100861

Bozem,  H.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  A.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100983

Harder,  H.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101122

Martínez,  M.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100935

Fischer,  H.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bozem, H., Pozzer, A., Harder, H., Martínez, M., Williams, J., Lelieveld, J., et al. (2017). The influence of deep convection on HCHO and H2O2 in the upper troposphere over Europe. Atmospheric Chemistry and Physics, 17(19), 11835-11848. doi:10.5194/acp-17-11835-2017.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-0335-8
Abstract
Deep convection is an efficient mechanism for vertical trace gas transport from the Earth's surface to the upper troposphere (UT). The convective redistribution of short-lived trace gases emitted at the surface typically results in a C-shaped profile. This redistribution mechanism can impact photochemical processes, e.g. ozone and radical production in the UT on a large scale due to the generally longer lifetimes of species like formaldehyde (HCHO) and hydrogen peroxide (H2O2), which are important HOx precursors (HOx = OH + HO2 radicals). Due to the solubility of HCHO and H2O2 their transport may be suppressed as they are efficiently removed by wet deposition. Here we present a case study of deep convection over Germany in the summer of 2007 within the framework of the HOOVER II project. Airborne in-situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Comparing the in- and outflow indicates almost undiluted transport of insoluble trace gases from the boundary layer to the UT. The ratios of out/inflow of CO and CH4 are 0.94 ± 0.04 and 0.99 ± 0.01, respectively. For the soluble species HCHO and H2O2 these ratios are 0.55 ± 0.09 and 0.61 ± 0.08, respectively, indicating partial scavenging and washout. Chemical box model simulations show that post-convection secondary formation of HCHO and H2O2 cannot explain their enhancement in the UT. A plausible explanation, in particular for the enhancement of the highly soluble H2O2, is degassing from cloud droplets during freezing, which reduces the retention coefficient.