English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Secondary ion mass spectrometry imaging and multivariate data analysis reveals co-aggregation patterns of Populus trichocarpa leaf surface compounds on micrometer scale

MPS-Authors
/persons/resource/persons136863

Kulkarni,  Purva
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons191733

Dost,  Mina
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3812

Boland,  Wilhelm
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4203

Svatoš,  Aleš
Research Group Mass Spectrometry, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kulkarni, P., Dost, M., Bulut, Ö. D., Welle, A., Böcker, S., Boland, W., et al. (2018). Secondary ion mass spectrometry imaging and multivariate data analysis reveals co-aggregation patterns of Populus trichocarpa leaf surface compounds on micrometer scale. The Plant Journal, 93(1), 193-206. doi:10.1111/tpj.13763.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-011C-0
Abstract
Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution TOF-SIMS imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of Populus trichocarpa were blotted on silicon wafers and imaged using time-of-flight secondary ion mass spectrometry (TOF-SIMS) at 10 μm and 1 μm lateral resolution. Intense M+● and M-● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C21 -C30 ), hydrocarbons (C25 -C33 ) and wax esters (C44 -C48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a 5-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed "crystals," were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C23 or C29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and wax esters. The ultra-high resolution TOF-SIMS imaging combined with MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface.