Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Perch, Perca fluviatilis show a directional preference for, but do not increase attacks toward, prey in response to water-borne cortisol

MPG-Autoren
/persons/resource/persons207310

Rowland,  Hannah M.
Max Planck Research Group Predators and Prey, Dr. Hannah Rowland, MPI for Chemical Ecology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ROW001.pdf
(Verlagsversion), 516KB

Ergänzendes Material (frei zugänglich)

ROW001s1.xlsx
(Ergänzendes Material), 42KB

Zitation

Henderson, L. J., Ryan, M. R., & Rowland, H. M. (2017). Perch, Perca fluviatilis show a directional preference for, but do not increase attacks toward, prey in response to water-borne cortisol. PeerJ, 5: e3883. doi:10.7717/peerj.3883.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-FF86-A
Zusammenfassung
In freshwater environments, chemosensory cues play an important role in predatorprey interactions. Prey use a variety of chemosensory cues to detect and avoid predators. However, whether predators use the chemical cues released by disturbed or stressed prey has received less attention. Here we tested the hypothesis that the disturbance cue cortisol, in conjunction with visual cues of prey, elevates predatory behavior. We presented predators (perch, Perca fluviatilis) with three chemosensory choice tests and recorded their location, orientation, and aggressive behavior. We compared the responses of predators when provided with (i) visual cues of prey only (two adjacent tanks containing sticklebacks); (ii) visual and natural chemical cues of prey vs. visual cues only; and (iii) visual cues of prey with cortisol vs. visual cues only. Perch spent a significantly higher proportion of time in proximity to prey, and orientated toward prey more, when presented with a cortisol stimulus plus visual cues, relative to presentations of visual and natural chemical cues of prey, or visual cues of prey only. There was a trend that perch directed a higher proportion of predatory behaviors (number of lunges) toward sticklebacks when presented with a cortisol stimulus plus visual cues, relative to the other chemosensory conditions. But they did not show a significant increase in total predatory behavior in response to cortisol. Therefore, it is not clear whether water-borne cortisol, in conjunction with visual cues of prey, affects predatory behavior. Our results provide evidence that cortisol could be a source of public information about prey state and/or disturbance, but further work is required to confirm this.