Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Kinetically Trapped Liquid-State Conformers of a Sodiated Model Peptide Observed in the Gas Phase

MPG-Autoren
/persons/resource/persons86773

Schneider,  Markus
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21325

Baldauf,  Carsten
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

acs.jpca.7b06431.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schneider, M., Masellis, C., Rizzo, T., & Baldauf, C. (2017). Kinetically Trapped Liquid-State Conformers of a Sodiated Model Peptide Observed in the Gas Phase. The Journal of Physical Chemistry A, 121(36), 6838-6844. doi: 10.1021/acs.jpca.7b06431.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-003D-E
Zusammenfassung
We investigate the peptide AcPheAla5LysH+, a model system for studying helix formation in the gas phase, in order to fully understand the forces that stabilize the helical structure. In particular, we address the question of whether the local fixation of the positive charge at the peptide’s C-terminus is a prerequisite for forming helices by replacing the protonated C-terminal Lys residue by Ala and a sodium cation. The combination of gas-phase vibrational spectroscopy of cryogenically cooled ions with molecular simulations based on density-functional theory (DFT) allows for detailed structure elucidation. For sodiated AcPheAla6, we find globular rather than helical structures, as the mobile positive charge strongly interacts with the peptide backbone and disrupts secondary structure formation. Interestingly, the global minimum structure from simulation is not present in the experiment. We interpret that this is due to high barriers involved in rearranging the peptide−cation interaction that ultimately result in kinetically trapped structures being observed in the experiment.