Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds

MPG-Autoren
/persons/resource/persons84716

Seifert,  Tom
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21693

Kampfrath,  Tobias
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Seifert, T., Martens, U., Günther, S., Schoen, M. A. W., Radu, F., Chen, X. Z., et al. (2017). Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds. SPIN. doi:10.1142/S2010324717400100.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-FCDC-2
Zusammenfassung
Terahertz emission spectroscopy of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin-orbit interaction at highest frequencies but has also paved the way to applications such as efficient and ultrabroadband emitters of terahertz electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of terahertz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, Dysprosium Cobalt (DyCo5), Gadolinium Iron (Gd24Fe76), Magnetite (Fe3O4) and Iron Rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnet's conduction electrons but also on the specific interface conditions, thereby suggesting terahertz emission spectroscopy to be a highly surface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.