English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle

MPS-Authors
/persons/resource/persons4231

Vogel,  Heiko
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3916

Heckel,  David G.
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Müller, C., Vogel, H., & Heckel, D. G. (2017). Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Molecular Ecology, 26(22), 6370-6383. doi:10.1111/mec.14349.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-EE00-E
Abstract
Oligophagous herbivores must adjust their enzymatic machinery to the different host plant species they consume. If different hosts are used from one generation to the next, adaptation may be highly plastic, while if a single host is used over several generations there may be a longer-term response due to natural selection. Using an experimental evolutionary approach, we investigated effects of long-term experience versus short-term responses to different host plants in the oligophagous mustard leaf beetle Phaedon cochleariae. After 26 generations of continuous feeding on either Brassica rapa, Nasturtium officinale or Sinapis alba, freshly hatched larvae were kept on these plants or moved to one of the other host plants for ten days. Global transcriptional patterns as shown by microarrays revealed that between 1% and 16.1% of all 25,227 putative genes were differentially expressed in these treatments in comparison to the control line constantly feeding on B. rapa. A shift back from S. alba to B. rapa caused the largest changes in gene transcription and may thus represent the harshest conditions. Infection rates with a gregarine parasite were intermediate in all lines that were constantly kept on one host, but much lower or higher when short-term shifts to other host plants occurred. In conclusion, transcriptional plasticity in genes related to metabolism, digestion and general cellular processes plays a key role in long- and short-term responses of the beetle to changing host plant conditions, whereby the specific conditions also affect the interactions between the beetle host and its gregarine parasite.