Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact of spatially correlated pore-scale heterogeneity on drying porous media

MPG-Autoren
/persons/resource/persons209009

Fantinel,  Paolo
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons209011

Lühder,  Wieland
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173520

Goehring,  Lucas
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Borgmann, O., Fantinel, P., Lühder, W., Goehring, L., & Holtzman, R. (2017). Impact of spatially correlated pore-scale heterogeneity on drying porous media. Water Resources Research, 53(7), 5645-5658. doi:10.1002/2016WR020260.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-DFEF-F
Zusammenfassung
We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media.We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, pro-longing liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.