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Abstract

During language acquisition, infants frequently encounter ambient noise. We present a
computational model to address whether specific acoustic processing abilities are neces-
sary to detect known words in moderate noise—an ability attested experimentally in infants.
The model implements a general purpose speech encoding and word detection procedure.
Importantly, the model contains no dedicated processes for removing or cancelling out
ambient noise, and it can replicate the patterns of results obtained in several infant experi-
ments. In addition to noise, we also addressed the role of previous experience with particu-
lar target words: does the frequency of a word matter, and does it play a role whether that
word has been spoken by one or multiple speakers? The simulation results show that both
factors affect noise robustness. We also investigated how robust word detection is to
changes in speaker identity by comparing words spoken by known versus unknown speak-
ers during the simulated test. This factor interacted with both noise level and past experi-
ence, showing that an increase in exposure is only helpful when a familiar speaker provides
the test material. Added variability proved helpful only when encountering an unknown
speaker. Finally, we addressed whether infants need to recognise specific words, or
whether a more parsimonious explanation of infant behaviour, which we refer to as match-
ing, is sufficient. Recognition involves a focus of attention on a specific target word, while
matching only requires finding the best correspondence of acoustic input to a known pattern
in the memory. Attending to a specific target word proves to be more noise robust, but a
general word matching procedure can be sufficient to simulate experimental data stemming
from young infants. A change from acoustic matching to targeted recognition provides an
explanation of the improvements observed in infants around their first birthday. In summary,
we present a computational model incorporating only the processes infants might employ
when hearing words in noise. Our findings show that a parsimonious interpretation of
behaviour is sufficient and we offer a formal account of emerging abilities.
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Introduction

From the moment they are born, and probably even before that, infants are exposed to acoustic
signals from a mix of sources, such as a mother speaking to her infant with the television run-
ning in the background. Infants hardly ever hear completely noise-free speech [1] and this will
have an impact on the language acquisition process. Given the pervasive presence of a some-
what noisy acoustic ‘scene’ in which infants (and adults) are living, relatively little research has
been conducted to investigate infants’ speech processing capabilities in noisy environments.
Understanding the impact of noise on language acquisition is all the more important because
very noisy environments have been linked to a disadvantage in language acquisition [2].

In the present paper, we employ a computational model to study which abilities infants
minimally need to bring to the task. Our goal is to explain the overall patterns of performance
observed in the handful of experimental studies that exist on infant speech perception in noise.
To this end, we first discuss common behavioural methods employed in infant studies, then
review existing infant studies and subsequently formulate the goals of this paper. In the model
section we describe the background against which we develop our model to clarify why we
chose a computational approach.

Experimental research into the cognitive capabilities of infants is far from straightforward;
studies have to rely on behavioural responses to external stimulation. Many experiments that
investigate early language acquisition are based on procedures that measure listening prefer-
ences. In a typical instance of a listening preference study, the time infants spend attending to a
given speech stimulus is measured. To this end, unrelated visual targets are presented along
with sounds. Both the visual target and the sound stop shortly after the infant looks away, thus
coupling looking at the target to listening times. When infants’ looking times, and thus pre-
sumably listening durations and interest in the acoustic stimuli, diverge systematically across
stimulus types (e.g., comparing the infant’s own name to a foil [3, 4]), infants are presumed to
process these acoustic stimuli differently. What processing means exactly depends on the theo-
ries that guide the design of the experiment.

Many infant experiments described in the literature consist of two phases. In the first phase
infants are familiarised with a stimulus, for example two words. In the following test phase the
responses to new tokens of the same stimulus they previously heard are compared to responses
when hearing a completely novel stimulus. The above described set-up can also be used to
investigate how infants process words that they might have learned before they come into the
lab. In these cases the listening durations in response to putatively known and unknown (but
similar) words are compared without prior familiarisation.

Most infant experiments use natural speech that was recorded under ideal conditions. Only
a small number of experiments have investigated how infants process speech in the presence of
competing speakers or other background noise. Almost all experimental research has found
that infants perform substantially worse than adults when they have to process speech in
adverse acoustic conditions. More precisely, infants seemingly fail to detect words at noise lev-
els which hardly affect adults, namely in environments comparable to a busy café or restaurant.
Opverall, factors that are relevant for adults in noise seem to affect infants’ abilities in similar
ways. It matters, for example, whether the target speaker is familiar or not. It is as yet unclear
exactly how infants process speech in noisy environments. Computational modelling, unlike
experimental infant studies, offers the possibility to investigate which processes are necessary
and sufficient to explain infants’ attested abilities.

One of the first studies that addressed the robustness of infants’ early word representations
in the presence of a competing speaker was conducted by Newman and Jusczyk [5]. The
authors found that 7.5-month-old infants, after having been familiarised with words which
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were spoken by a female speaker, could distinguish those words from novel ones, despite the
presence of a distracting male voice that was 10 and 5 decibel (dB) less loud (expressed as sig-
nal-to-noise ratios, SNRs, of 10 and 5 dB, respectively). This work was extended by Barker and
Newman [1] who used female speakers as target and as distractors. They found that infants
were only able to solve the task when the words were spoken by a well-known target speaker,
i.e., the infant’s own mother. If the target was an unknown female speaker, infants failed to dis-
tinguish the familiarised words from novel words, even at an SNR of 10 dB. One explanation
for the difference between this result and the findings of Newman and Jusczyk [5] is that it is
easier to separate a female voice from a male voice than to separate two female voices. Extend-
ing these findings, Hollich and colleagues [6] showed that synchronised information aids
7.5-month-old infants in succeeding at the task of distinguishing familiar from novel words in
noise, even at 0 dB SNR. In this work, infants saw videos of a woman who pronounced the
familiarisation stimuli along with hearing the target and the competing signal. Only when the
visual and the audio stimuli were synchronised could infants harness the additional visual cues.

In a study without a familiarisation phase Newman [4] found that 5- and 9-month-olds can
detect their own name, one of the earliest words in their vocabulary [3], in the presence of
multi-talker background noise at 10 dB SNR, but not at 5 dB SNR. Around their first birthday
infants can detect their name even in noisier conditions at 5 dB SNR. This change in the ability
to deal with noise can be due to many factors, ranging from an overall improvement in linguis-
tic processing abilities to a changed strategy when listening to speech in noise. Following up on
this study, infants were found to differ from adults at 5 months: When multiple speakers pro-
vided the background noise at 10 dB SNR, infants recognized their own name, but not when a
single voice competed with the target signal [7]. At 8.5 months, infants can accommodate both
single- and multi-talker background noise and detect the presence of their own name com-
pared to matched foils. Adults, in contrast seem to find it easier to separate two voices than sep-
arating one target voice from a mix of background talkers. Recent work has exchanged
distracting signals from other talkers with uniform noise. In white noise at 10 dB SNR, it plays
a role for 8-month-olds whether the spectral channels of the white noise overlap with the target
speech or not [8]. This means that infants’ ability to distinguish their name from other names
was hampered more by a perceptual overlap which is already present in the first stages of audi-
tory processing (so-called energetic masking), than the presence of a distractor which diverts
attention and has to be segregated (informational masking). This finding points to infants
being able to focus at least to some extent on the target signal.

Next to target words in the presence of distracting speech or white noise, a second line of
inquiry has investigated the processing of sounds while hearing different types of non-speech
noise. We present these results briefly for completeness, but focus on the studies discussed
above in the remainder of the paper. Polka, Rvachew, and Molnar [9] found that about half of
the 6- to 8-month-old infants in their experiment were not able to discover the difference
between /bu/ and /gu/ syllables when the speech signals were mixed with cricket noise or bird
song during the familiarisation phase. There was no difference between a group of infants that
heard the noisy signals both during familiarisation and test and a group that was familiarised
with the noisy stimuli and tested with noise-free speech. Contrastingly, of the infants familiar-
ised and tested with noise-free speech all but one succeeded at the task. The mixed speech and
background signals were constructed such that there was no overlap in the frequency bands.
Therefore, the speech stimuli were not affected by any kind of energetic masking caused by
overlapping frequency bands; this leaves some form of informational masking [10] as the most
likely explanation for the difficulty encountered by the infants. Comparing these results to the
above-mentioned findings on the word-level, it seems that infants’ abilities are disturbed by
informational masking, but to a lesser extent than when encountering energetic masking [8].
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Countering the effects of energetic and, even more so, informational masking requires some
form of auditory stream segregation [11]. Stream segregation comes seemingly effortless to
adult listeners in moderately noisy conditions: it is usually not too difficult to attend to a con-
versation partner in a busy restaurant. Adults appear to combine a variety of processes to
understand speech in noise. Directional hearing is among the most powerful tools for this pur-
pose, which relies on the signal arriving at different time points at each ear depending on the
origin. Attending to the speakers’ lip movements is also helpful. Exactly how stream segrega-
tion is accomplished in specific acoustic contexts is not yet completely understood, but it is
likely that adults combine strategies based on bottom-up signal processing, such as directional
hearing and top-down processing, such as focusing attention on specific aspects of the signal
and predicting missing words based on linguistic knowledge [12]. In the infant experiments
summarised above the two most powerful processes that can be invoked in stream segregation,
observing lip movements and directional hearing, were unavailable. Instead, infants listened to
a mix of voices or to one voice and added non-speech noise that was played over a single loud-
speaker in the absence of visual cues. Given these restrictions only processes remain that
require substantial top-down prediction and active focusing of attention on detailed features of
the speech signal to counter the adverse impact of noise. It seems unlikely that infants already
posses the ability to predict the speech input given they only know a few words [13].

Goals of the Present Paper

While there seems to be agreement in the field that infants lack most of the tools that adults
employ when comprehending speech in noise, behavioural experiments provide evidence that
6- to 8-month-olds can accommodate speech in noise to some extent, even in the adverse con-
ditions that prevail in infant experiments. Which capabilities that infants can conceivably
bring to the task and that do not require sophisticated linguistic abilities can account for the
experimental results summarised above? Experimental studies show that infants usually suc-
ceed in detecting words in noise of 10 dB SNR, and that they have greater difficulty detecting
words 5 dB SNR (depending on the age and the test conditions); success at 0 dB requires the
task to be simplified [6]. We thus take the two noise levels of 10 and 5 dB SNR as crucial test
case and expect our model to replicate the behavioural pattern emerging from the literature [4,
5], namely relatively robust word detection at 10 dB SNR, and a severe decrease of these abili-
ties at 5 dB SNR.

During the formalisation of the proposed abilities and of infants’ experiences, the following
issues became apparent; we thus examine them in addition to word detection in noisy condi-
tions (more precisely, at 10 and 5 dB SNR): first, previous experience might influence infants’
performance and some of the observed variability between participants could stem from differ-
ences in what they previously heard outside the lab, especially in studies that relied on previous
experience. We target two factors that have previously been proposed to affect infants’ perfor-
mance when recognising previously learned words, namely word frequency and whether or
not multiple speakers uttered this word [4, 5]. Experimental data indicate that multiple voices
in the input, opposed to a single voice, can aid infants in building representations that seem
more sophisticated [14], and which might be more noise-robust as well. The second issue is the
preference for and better performance with familiar voices [1, 15]. We directly test this by sim-
ulating the typical test situation where infants hear a completely unknown speaker and contrast
this against testing with the speaker that provided the learning material. A third factor pertains
to our current lack of knowledge what exactly drives infant behaviour in experimental settings
[16]. Is it the recognition of a specific word, which requires attentional focus to that target? Or
is any match with previously stored acoustic representation sufficient to generate the observed
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outcomes? Especially in experiments that did not use the familiarisation-followed-by-test pro-
tocol [4, 7, 8] it is tempting to conclude that infants recognise their name, i.e., that infants are
able to link the acoustic input to some abstract representation and they expect this specific
word to occur. However, for the familiarisation-followed-by-test protocol previous work dem-
onstrated that a more parsimonious interpretation is possible [17]: to distinguish between
familiar and unknown words, a simple match of purely acoustic representations suffices;
abstract or cross-modal cues to the meaning of a word or phrase were not necessary to simulate
infant behaviour. We will indicate the reliance on acoustic representations alone without mak-
ing use of a form of meaning by the term matching. Both concepts will be defined in more
detail in the Model section.

The Computational Model
Ethics Statement

All data reported in the present paper stem from computational modelling studies and did not
involve human participants. The speech material used was obtained with the informed consent
of all speakers (see Section on Speech Material for further details).

Background: Computational Models of Infant Language Development

Experiments that test infants in laboratory settings can yield information about capabilities at a
certain point in development. However, these tests only provide limited insight into the cogni-
tive processes that underlie the acquisition and improvement of those skills. Because cognitive
processes cannot be observed directly, computational simulations provide promising tools for
gaining insights into the underlying processes. Most existing computational models have rela-
tively modest goals: they aim to investigate to what extent a learning strategy can succeed in
simulating abilities proposed to underlie the behaviours observed in specific (sets of) experi-
ments. For example, models might, like infants, distinguish between two syllables, such as /bu/
and /gu/ [9]; associate monosyllabic non-words (e.g., /1if/ or /neem/) with pictures of different
objects [18, 19]; or segment a syllable stream into a sequence of words [20]. Across modelling
efforts, it is important to note that no exact behavioural patterns are being replicated, instead
model data are compared to trends found in experimental group data, such as success in one
condition and failure in another (see e.g., [19]). This results in a tension between experiments
measuring skills based on external behaviours at a specific time point and models aiming to
address internal processes and general development.

Existing models of word learning share an important characteristic: they all represent audi-
tory stimuli in the form of hand-crafted discrete units, which may be symbols (words or pho-
nemes), or putative sub-symbolic units such as phonetic feature vectors. Further, the input is
frequently adapted to the requirements of a given learning algorithm. Thus, existing models
assume that there is a black box operating that can convert speech signals into sequences of the
type of units that the model takes as input representations [21]. The results of simulations with
these models depend as much on the decisions about the input representations as on the learn-
ing mechanisms that they propose. Specific input representations make implicit, but crucially
important assumptions about infants’ abilities necessary to solve a given task. In the context of
the present paper, a further problem arises: the representation of noise. While it is already diffi-
cult to construct representations of noise-free speech, creating credible representations of
speech in noise is virtually impossible. We thus cannot rely on existing models in the present

paper.
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The model presented in this paper takes real speech, noise-free as well as noisy, as input and
thus sidesteps the problem of hand-crafting credible input. One other model of language acqui-
sition that takes speech as input and links it to cross-modal information is the Cross-channel
Early Lexical Learning (CELL) model [22]. In CELL all processes from the raw acoustic signal
to the word acquisition and comprehension process are included and made transparent. CELL
uses techniques from automatic speech recognition to convert speech signals into a lattice of
phone symbols. These techniques require substantial previous learning and can be very sensi-
tive to noise and speaker differences, the crucial factors in the present paper. Thus, we could
not employ CELL for the modelling task at hand.

Many computational models of word learning [22] assume some form of multi-modal
input, in which speech is accompanied by information that suggests categories; this is akin to
supervised learning. Infants learn by trial and error and they receive mostly implicit and some-
times ambiguous feedback, be it external, such as caregiver responses, or internal, for example
obtaining a toy, on their actions which provides some level of supervision. In machine learning
literature, this corresponds to reinforcement learning. Experiments with infants have shown
that learning is most efficient when the feedback is unambiguous [23-25]. For the simulations
in this paper we are using unambiguous labels and as a consequence strictly supervised learn-
ing. However, it has been shown that a model similar to the one employed in the present paper
can also learn when the feedback is not as systematic and error-free [26]. We limited ourselves
to unambiguous input in this paper, since a throughout formalisation and investigation of
ambiguous feedback requires a more in-depth examination than permitted in the context of
this paper. In turn, we only let the model learn from a small amount of speech, amounting to
what infants hear over a few days [27], so that it becomes plausible that infants receive a com-
parable amount of input within their first months paired with clear and unambiguous feedback
(see also [28] for a review of supporting findings).

A theory of early language development. It is instructive—and for substantial theoretical
progress even necessary—to relate computational models of language acquisition to a theory.
PRIMIR, a developmental framework for Processing Rich Information from Multidimensional
Interactive Representations [29], is at once a functional specification of a comprehensive theory
of language acquisition and a reference for interpreting computational models that aim to
investigate a specific part of this comprehensive theory. PRIMIR starts from the observation
that speech signals carry linguistic, para-linguistic (intonation, stress) and extra-linguistic
(speaker identity and gender) information. To acquire the native language a child must pick up
and organise the information in the signal along a number of multidimensional interactive
planes. The interactions between the representations on these planes are implemented by
dynamic filters that help to reorganise the representations during the acquisition process. The
lowest level in PRIMIR is the General Perceptual plane that represents the raw speech signal.
Importantly, during the first stages of language acquisition, when concepts such as ‘word’, ‘syl-
lable’, or ‘phoneme’ that eventually come to live on higher-level planes are not yet available;
what is stored and represented in the General Perceptual plane corresponds to utterances, i.e.,
stretches of speech separated by clear pauses. Most of the computational models mentioned
above can be conceived of as simulating representations and processes that are within PRIMIR
confined to planes which emerge later during development. CELL is an exception, in that it
aims to simulate the emergence of links between the Perceptual plane and planes that are more
specialised, containing information on meaning or conceptual representations. The model that
we are going to present next mainly implements the General Perceptual plane, although it
shares with CELL that it encompasses links to a plane that represents ‘objects’ which provide
supervision for the learning process.
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The Present Model

We use a computational model that learns acoustic representations of ‘words’ by processing
real spoken utterances that contain the target word, and which are presented in combination
with an unambiguous reference to an object corresponding to a specific target word. To pro-
vide focus for the experiments, we used strictly supervised learning; as noted above, it has been
shown that the model employed in this paper can also learn successfully with ambiguous and
partly incorrect references to the objects mentioned in the input utterances [26]. Simulating
the indirect feedback that an infant receives during the first months is a more than daunting
task [30], and we thus refrain from making any claims in that respect. Overall, the modelling
work in this paper relies on clear, unambiguous feedback, as mentioned in the Introduction.
This reliance in rendered realistic by only letting the model learn from a few hundred sen-
tences—input infants receive over a few days and which over several months can conceivably
occur with unambiguous referents. In designing the model and the learning procedure we
aimed at a maximal degree of cognitive and neurophysiological plausibility. The schematic
structure of the model, operating in learning mode, is shown in Fig 1; the model in testing
mode is shown in Fig 2. In the following sections, we verbally introduce all depicted compo-
nents in detail. For a formal description, we refer to the Supporting Information, specifically S2
File.

Modelled Learner
g Internal |
HAC-Vector Memory

External Input

Speech

Pt T

Meaning ummy’

“Cat’

‘Banana’  eep- ‘Banana

Fig 1. The model in learning mode. Input is presented as speech-meaning pair. After acoustic
preprocessing, the memory is adapted to better accommodate the new learning experience.

doi:10.1371/journal.pone.0132245.g001
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External Input H

Speech

M’ }* »M o Approximate v

(NMF)

Weights

X ) 1 .
Listening __
Preference |Activations \/

N v

Fig 2. The model in test mode. Input (top left) is presented without meaning information, which has to be
reconstructed using the fixed internal memory. The resulting activations are transformed into listening
preferences.

doi:10.1371/journal.pone.0132245.9002

Input Representations

Acoustic input. The model takes real acoustic signals as input, and to be able to simulate
infants’ early language processing skills we need a cognitively plausible simulation of the audi-
tory system to convert the signals to a representation that a computer can use for learning. Fol-
lowing a recent survey [31] we assume that infants’ auditory processing system is very similar
to the one of adults and that they perceive acoustic signals in terms of their temporal and spec-
tral properties with essentially the same resolution as found in adults. Therefore, we used a con-
ventional acoustic analysis procedure that captures the most important auditory features of the
signals. The continuously changing audio signal is divided into short overlapping slices of 20
ms, shifted in steps of 10 ms, so that we obtain 100 spectral envelopes per second. For the spec-
trum we use 30 band pass filters, equally spaced on a Mel-frequency scale, which corresponds
to the frequency resolution in the human auditory system. The way in which the spectral enve-
lopes change over time is perceptually more important than the shape of the envelope (e.g.,
[32], p. 735). We added first (speed) and second order (acceleration) differences, the so-called
A and AA coefficients, to the representation. The output of the 30 band pass filters is heavily
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correlated and thus forms a very redundant representation. To avoid unnecessary problems in
the learning procedures, we applied a cosine transform to the Mel-spectra that reduces the
dimensionality from 30 to 13; importantly, the resulting 13 dimensions are uncorrelated. The
resulting representation of the speech signal is very similar to the way in which speech is repre-
sented in mobile telephony. It is also the preferred representation in speech technology, where
it is known as Mel-Frequency Cepstral Coefficients (MFCC) [33]. For a schematic overview of
the transformation from the speech signal into MFCCs, see [34]

The tonotopical representations that are formed in the peripheral auditory system can
traced up to the auditory cortex [35, 36], albeit with less detail. It appears that some kind of
clustering is used for compressing the information. This makes it possible to represent the
detailed spectro-temporal information at the output of the acoustic analysis by the centroids of
a relatively small number of clusters. It is reasonable to assume that these clusters are formed
on the basis of purely acoustic information and the wiring of the brain cells [37] during the
early language acquisition. The procedure that we used for replacing individual spectra by the
closest cluster centroid is known as Vector Quantisation (VQ). For practical reasons we learned
the cluster centroids from recordings of ten speakers of Dutch, which were made under the
same conditions as the recordings of the English speakers used in this study. All mobile tele-
phony based on GSM uses VQ to compress the information about the spectral envelopes. The
fact that a GSM handset can be used by speakers of any language proves that the VQ procedure
is language-independent. We use 150 clusters for the spectral envelopes and for the speed of
change values, and 100 clusters for the acceleration. These numbers allow to capture a great
amount of detail and are more than sufficient to describe the speech signal without making
assumptions regarding the target language. The clusters are referred to with the term code book
labels.

Converting different length utterances to fixed-length representations. If we compute a
spectral envelope for each 10 ms stretch of an acoustic signal, which we then represent by a set
of three code book labels (one for the stationary envelope, one for the speed of change and a
third one for the acceleration), utterances of different lengths will result in representations con-
taining a different number of elements. For all existing learning procedures, probably including
learning by mammals, it would be highly beneficial if it were possible to obtain fixed-length
representations. If we assume that an audio signal activates tonotopical representations, and if
we further assume that these activations will live for the duration of a complex acoustic event,
such as a speech signal between two clear pauses, we can convert variable-length signals into
fixed-length representations by recording the activation of the complete set of cell assemblies
that correspond to the tonotopical representations, because the cardinality of that set is fixed.
In our representation each simulated cell assembly corresponds to the co-occurrence of two
code book labels at time distances of 20 ms and 50 ms. By using label co-occurrences, instead
of individual labels, we represent the dynamic information that is characteristic for speech
sounds; these distances can capture both the relative stability within and the changes between
adjacent sounds. Larger distances would introduce too much variability, and shorter time lags
would lead to overly redundant representations [38]. We present short sentences, which form
independent clauses and are typically separated by pauses. Infants can already detect phrase-
boundaries at the age of 6 months [39, 40]. Further, the chunking of the signal into short
phrases does not over-tax the attentional system. Since all 150+150+100 code book labels may
co-occur with all other labels at 20 and 50 ms intervals, the number of different simulated cell
assemblies amounts to (150%+150%+100%)*2 = 110,000. Because a one second duration utter-
ance yields 100 sets of co-occurrences, the resulting representations are extremely sparse.
There is mounting evidence that sensory inputs are represented in the brain as sparse vectors
in a very high dimensional space [41, 42].
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The representation of an utterance in the form of counts of co-occurrences is called a Histo-
gram of Acoustic Co-occurrences (HAC; [43]). It can be argued that HAC representations can-
not be adequate, because all information about temporal structure beyond 50 ms is lost.
However, a representation of spoken utterances as a “bag of acoustic events” has been shown
to contain sufficient detail to detect words [44]. It is interesting to note that for the purpose of
information retrieval or automatic question answering surprisingly little information is lost if a
text is represented as a “bag of words” [45]. Hence, it seems that the contribution of long-dis-
tance structures to the interpretation of utterances is somewhat limited. When modelling the
initial stages of language acquisition this is very beneficial, since it allows us to “guess” the
meaning of an utterance on the basis of a superficial representation.

The code book labels that form the basis for building the HAC representations have been
learned from clean speech. We will use the exact same code book labels to convert speech in
noise to HAC representations. This implies that we do not provide any form of stream segrega-
tion on the basis of the acoustic detail in the audio signals.

Meaning representation. In the present paper we used a supervised learning approach.
For that purpose we assign a unique and unambiguous label to each utterance in the acoustic
material that we use for learning. All utterances in the simulations are simple sentences, and
each sentence contains one of 15 different keywords, which the label indicates without provid-
ing cues to its position within the sentence. In behavioural terms the model will need to learn
that a sentence is for example about a cat, and not about mummy or a telephone. In many con-
strained communication contexts this is probably sufficient to understand the gist of an utter-
ance. The use of complete sentences, instead of isolated words, is motivated by the observation
that infants typically are exposed to multi-word utterances [27]. The use of whole sentences
also renders the model’s task during both learning and testing more difficult compared to
using words in isolation. In all simulations reported here, the keyword is represented by
extending the acoustic HAC vectors with a number of entries equal to the number of acoustic-
meaning correspondences that must be learned. Each element of the extension corresponds to
a single keyword; if the keyword is present in the sentence this entry is set to one; otherwise
this entry is set to zero (see Fig 1). We will indicate the HAC vectors enriched with meaning
information as HAC+M vectors.

Learning

It has been shown that complex visual objects are neurally represented as combinations of
primitives, such as lines and colours [46]. Recent findings about cortical representation of
audio signals [35, 36] strongly suggests that a similar procedure operates in auditory percep-
tion, which means that complex auditory stimuli are represented as combinations of acoustic
primitives. The primitives must be learned from physical stimuli.

Infants necessarily learn from experience; during language acquisition experiences consist
of acoustic signals that are perceived in some cross-modal context. In our model learning
amounts to discovering acoustic primitives that can be used to distinguish between sentences
that relate to one of 15 different objects. These primitives must somehow be discovered by pro-
cessing HAC+M vectors. We aim for our model to accomplish this in a cognitively and neuro-
physiologically plausible manner.

HAC+M vectors are an example of very sparse representations in a very high-dimensional
space. For high-dimensional sparse representations there are several methods that can be used
for simultaneously learning primitives and the way in which complex phenomena are con-
structed as a sum of the primitives. In our model we chose Non-Negative Matrix Factorization
(NMF) [47] as a computational analogue of a cognitive process that updates and modifies
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internal memory representations based on the experience with perceived stimuli. NMF was
originally developed as a batch learning procedure, i.e., a procedure that must iterate over a
large database of learning tokens, a procedure that is not cognitively plausible. Driesen, ten
Bosch, and Van hamme [48] developed a version of NMF that can be used for incremental and
causal learning. Accordingly, our model encounters each utterance in the database of learning
materials exactly once, and the primitives are updated after each input utterance.

The algorithms for NMF learning that are available do not allow to learn how many primi-
tives are necessary to represent the learning data. Instead, the number of primitives, in other
words the size of the model’s long-term memory, must be specified in advance. It is our experi-
ence that this number is not a very important parameter, as long as it is four to five times as
large as the number of acoustic-keyword associations that must be learned. Increasing the
number of primitives in the memory beyond that number has only marginal effects on the
eventual outcome of a learning process. In the simulations for this paper the model needed to
learn associations between acoustic signals and 15 keywords. We settled for a model with 70
primitives, which is close to the lower bound of necessary primitives. Thus, the memory in
Fig 1 and Fig 2 contains 70 primitives.

When a learning process starts, the primitives in the memory are initialised with small ran-
dom positive numbers. Processing the HAC+M vector corresponding to the first utterance
from the learning material results in updating all primitives in such a way that their sum comes
closer to the representation of that HAC+M vector. This leads to the memory representations
taking on the same structure as the input, in the present case the memory can therefore be sep-
arated into an acoustic and a meaning-encoding part (see Fig 1 and Fig 2). The update process
is repeated for all utterances (each represented in a single HAC+M vector) in the learning
material. The amount by which the primitives are updated depends on their contribution to
approximating the new learning utterance [47]. To avoid overly strong adaptation to the last
learning stimulus, the size of adaptations is limited. However, it is important to say that each
utterance in the learning material might affect all primitives, not only those that are most
strongly associated to the keyword in the input sentence.

In the simulations in this paper the model learns a representation for each keyword. This is
enforced by the fact that all sentences that contain a specific keyword have the exact same M
subvector in their HAC+M representations, irrespective of the carrier sentence or the speaker
who produced the sentence. This implies that the acoustic representations of a keyword must
accommodate all the variation that is present in the learning material, be it due to the phonetic
and prosodic context, the position of a word in a sentence, the amount of stress put on the
word, and so on. Importantly, in the simulations in this study the acoustic primitives were
learned from noise-free speech. This allows us to investigate the impact of the linguistic (multi-
ple carrier sentences for the same keyword), para-linguistic (intonation, stress) and extra-lin-
guistic (speaker identity and gender) variation in the learning material on the resilience of the
representations that are being learned against noise in the input signals.

Matching and Recognition

Infants’ behaviour in experiments is often measured in the form of listening preferences (see
Introduction for more detail). When infants listen longer (or shorter) to words that they are
assumed to know compared to unknown words, the difference is attributed to perceptual and
cognitive processing outcomes. Exactly what drives the overt, measurable behaviour of infants
who participate in speech perception studies is unclear [16, 17]. The usual interpretation of lis-
tening preferences is that infants recognise the known stimulus [4, 7, 8], and might be implied
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that recognition is equivalent to what we mean if we say that an adult person recognises or
understands a spoken utterance.

Recognition is associated with a specific abstract concept that is linked to a concrete instance
of the recently observed label, such as hearing the word “dog” and thinking of a type of four-
legged animal. Recognition can be facilitated by the presence of a visual target, which guides
infants’ expectations. This option, while frequently occurring in life outside the lab, is not avail-
able in the context of the experiments that form the basis for this paper. Instead, infants only
heard words and looked at an unrelated visual target. In this situation, recognition cannot be
observed in the form of looks to a visual referent, but must be inferred. Nonetheless, infants
might have specific expectations about which word they will hear, for example because they
heard this word before. Such a directed attention to and expectation about the presence of a
specific target word is what we define as recognition. Recognition, as defined in the context of
the present paper, requires the focus of attention on a specific target word. As such, recognition
can be used top-down to combat the impact of noise on word recognition. It is unclear whether
infants employ such top down mechanisms, but experimental data indicate that infants can
cope slightly better with informational masking than with energetic masking [8], which already
affects the earliest stages of sensory processing. This points to at least some role of top-down
mechanisms.

Experiments in which infants are familiarised with two words, and then tested with familiar
or novel words, do not necessarily warrant an interpretation of the responses in terms reminis-
cent of adult behaviour. Possibly, and more parsimoniously, observable behaviour in this situa-
tion is based on some form of matching of acoustic representations that do not have any link to
meaning representations [17]. It is thus not necessary to invoke any form of expectation and
directed attention when explaining infants’ listening behaviour. Any familiar pattern, whether
it was recently heard or not, that is detected in the speech input drives behaviour instead and
can vield the patterns of responses typically observed in infant experiments comparing two
stimulus types. In this context, the following question becomes very relevant from this point of
view: Do the unknown words drive less of a reaction because they are not the target (i.e. recog-
nition) or because they are simply a worse match for any known word compared to the target
word (i.e. matching)? Current experimental evidence is compatible with both interpretations
of infant looking behaviour, namely that the driving mechanism is recognition of specific
words or matching stimuli to any known acoustic pattern.

To be able to simulate the outcome measures of infant experiments our model must simu-
late the equivalent of listening preference. In test mode, depicted in Fig 2, the model does not
learn from input and only ‘hears’ the acoustic signal of an utterance (represented as a HAC vec-
tor) without the additional meaning (+M vector) information. The NMF algorithm described
in the previous section is used to find the weights of the acoustic parts of the 70 primitives in
the memory that optimally reconstruct the HAC vector of the test utterance. The same weights
are then applied to the meaning part of the 70 primitives in the memory. This results in activa-
tions for all 15 keywords that are being learned. These activations are a measure of the likeli-
hood that the test utterance contains the corresponding keyword. If the model has successfully
learned the associations between the acoustic representations and the keywords, the activation
of the presented keyword in the sentence will be larger than the activations of competing
words. The acoustic part of the primitives will be able to approximate the HAC representation
of any audio signal to some extent. Thus, utterances that do not contain one of the 15 keywords
will still result in activations for the keywords. As long as there is no substantial acoustic simi-
larity between unknown words and any of the 15 keywords, it may be expected that all key-
words receive a small random activation, and that no one keyword will stand out. We assume
that activations and listening time are congruent, so that activations can be considered as

PLOS ONE | DOI:10.1371/journal.pone.0132245 July 28,2015 12/26



@’PLOS ‘ ONE

Modelling the Noise-Robustness of Infants’ Word Representations

(scaled) listening times. The assumption that activation is a scaled representation of listening
time ignores all other factors, such as waning attention, that may affect the observable behav-
iour [17]. Including the systematic and random effects of these factors would increase the vari-
ance of the listening time measures, but the overall trends in the results will remain the same.

In our simulations we have implemented both the matching and the recognition interpreta-
tions of the perceptual and cognitive processes that are assumed to drive observable behaviour.
For both interpretations we derive a measure of listening preference for known words versus
foils from the activations of the primitives in the model’s memory. In the matching interpreta-
tion listening preference is based on the activation of any keyword that receives the highest
activation after processing a test utterance. If the test utterance did not contain one of the 15
keywords, the one with the highest activation cannot be ‘correct’. If the test utterance did con-
tain one of the keyword, the identity of that keyword is ignored in the computation o the listen-
ing time, which in all cases is based on the activation of the ‘winning’ keyword. In the
recognition interpretation the listening time is based on the activation of the keyword. If the
test utterance contains a foil, rather than a keyword, listening time is still based on the activa-
tion of the “impersonated” keyword, since this keyword is expected to occur. It should be
noted that the “listening times” cannot be linked to absolute times (which can vary greatly
between experiments due to yet unknown factors [16, 49]), hence the relative assessment of
comparing target words to foils, akin to many infant studies.

Design of the Simulation Experiments

Speech material. We first present the speech material that provided all auditory input for
the model in the present simulations. We used a dedicated speech corpus for the simulations in
this paper, which was recorded as part of the ACORNS (ACquisition Of Recognition and com-
municatioN Skills) project, labelled “Year 2”. The corpus is available upon request at The Lan-
guage Archive of the Max Planck Institute for Psycholinguistics, via the permanent handle
http://hdl.handle.net/1839/00-0000-0000-001 A-D60B-1@view.

The recordings were made in a virtually noise-free environment and the speakers were
asked to speak as if talking to a young infant. The corpus consists of short English sentences
that contain specific keywords embedded at initial or final position in various carrier sentences
(e.g., “Thisis a nice . ...”, “Where is the happy . . .?”). Each sentence contains one keyword. We
selected 15 words (animal, apple, banana, baby, bird, bottle, car, cat, cookie, daddy, dog,
mummy, telephone, toy, truck) as keywords for the simulations. The words were chosen
because the data from the MacArthur Communicative Development Inventories (CDI; [50])
suggest that infants growing up in English-speaking countries are familiar with these objects
and the corresponding words already in the first year of their life. The corpus contains ten
speakers (half of which are female), labelled Speaker 01-10 in the corpus. Four of the ten speak-
ers (two female) produced a number of utterances that was large enough to provide a sufficient
amount of speech for learning and testing. One female speaker (Speaker 02 in the corpus) was
selected as the ‘primary caregiver’, the speaker from which the model receives all, or most,
learning utterances. The other female speaker was used as an unknown test speaker (Speaker
04 in the corpus). Of the remaining eight speakers three males and three females were selected
to provide additional speech material in some of the experimental conditions. In addition to
the words that were used for learning, we selected the same carrier sentences with unknown
words for testing. The unknown words will be indicated by the term foils.

In this paper we used multi-talker babble noise from the NOISE-ROM-0, produced in the
FP4 ESPRIT Project No. 2589-SAM [51]. We produced test stimuli with SNRs (signal-to-noise
ratios) of 10 dB and 5 dB, similar to the SNR values used in Newman’s experiments [4, 7, 8].
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The noisy test stimuli were produced by adding the babble noise to the clean speech recordings.
The SNR was determined by computing the average Root-Mean-Square power of each of the
sentences in the test material, scaling the amplitude of a noise signal of the same duration as
the speech signal such that its average Root-Mean-Square power was 10 or 5 dB lower than the
speech power, and then adding the two signals. Short-time power variations in the speech sig-
nals are much larger than the short-time variation in the babble noise. Therefore, the resulting
local SNR in the louder intervals in the speech signals will be larger than the average value,
while the softer intervals will have a lower local SNR.

Simulating learning before the lab visit. In the experiments conducted by Newman and
her colleagues [4, 7, 8] infants were tested to see if they could detect their name when it was
spoken repeatedly in the presence of a competing sound. The experiments aimed to investigate
the robustness representations that infants formed ‘in the wild” before they came to the labora-
tory; the own name is one of the first words that infants seem to detect in noise-free speech in
the laboratory [3]. This ability is evidenced by longer listening times to the infant’s name com-
pared to foils.

In the simulations we want to investigate the robustness of word representations that are
the result of ecologically plausible learning conditions. Ideally, one would want to simulate
learning in noisy environments. However, in the Introduction we have already alluded to the
fact that ‘noise’ is a very complex issue: it can be a single competing speaker, many persons
speaking at the same time, stationary or non-stationary non-speech noise, covering frequency
bands that do or do not overlap with the frequency band that is relevant for speech. Last but
not least, the signal-to-noise ratio must be controlled. To make simulation experiments feasible
and in the interest of clarity, we decided to use only clean speech during learning and only one
noise type during test.

It has been suggested that the representations that infants form of words depend on the
number of time they hear a word, and the number of speakers who produce it [52]. An addi-
tional factor comes into play when considering that natural language forms infants’ input,
namely the frequency with which a word is heard relative to the frequency with which other
words are encountered can vary greatly. We first created a baseline learning corpus that con-
tains 30 sentences for each of the 15 keywords. The learning material is ordered in blocks of 15
sentences; each block contains one token of each of the keywords. We investigate the effect of
the relative frequency of the target word increasing the number of times this word is heard to
be twice as large as each of the remaining words. For that purpose we extend the baseline learn-
ing corpus with 30 additional utterances that contain the target keyword. The extended corpus
consists of 30 blocks of 16 sentences, all spoken by the same female speaker. The effect of hear-
ing the target word spoken is assessed by multiple speakers by extending the baseline corpus
with 30 different sentences containing the target word, but now spoken by six additional speak-
ers (speaker 05-10 in the corpus), three female and three male. Each of these six speakers con-
tributed five sentences. The multi-speaker extended learning corpus also consisted of 30 blocks
of 16 sentences, one for 14 words, two for one word. The learning conditions are summarised
in Table 1.

We selected three of the 15 keywords to be treated as target keyword, namely cat, mummy
and banana, i.e., a one-, a two- and a three-syllable word. The choice of these three words was
random; the ACORNS corpus contains several other one-, two- and three-syllable words. The
phonetic and acoustic make-up of the words selected to serve as target word might have an
impact on the final results. However, we decided to leave an in-depth investigation of such
effects for future research, but we will address the impact of the length and phonetic make-up
of the words by comparing the results for cat, mummy and banana.
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Table 1. Overview of learning conditions.

Experiment Word Token # Total Speakers

1. Baseline 211030 450 1: Primary Caregiver

2. Increased Frequency 42 to 60 480 1: Primary Caregiver

3. Variability from Multiple Voices 21to0 30 + 21 to 30 480 7: Primary Caregiver + 6 Speakers

The first column denotes the experiment, the second the number of word tokens the learner heard at the
point of testing, the third column shows the overall number of utterances the learner maximally heard for all
keywords, the fourth shows the number of speakers observed during learning.

doi:10.1371/journal.pone.0132245.t001

The simulated test. In the assessment of the modelled infant learner three additional fac-
tors play a role, namely the noise level (no noise, SNR 10, and 5 dB; following infant research
summarised above, the test speaker (known or unknown), and whether we base our computa-
tions of listening times on the assumption that matching acoustic patterns is sufficient or that
recognition of a specific word and its meaning is necessary. The test with clean speech will
allow us to determine the performance of the model in fully matched conditions (clean speech
in learning and in test). The two different procedures for simulating listening time, based on
the matching and recognition interpretations, are explained in depth above.

For each of the three target words we created two test corpora, each consisting of 80 sen-
tences, 20 containing the respective target word, and three sets of 20 sentences containing one
of three matched foils [4, 7]. We selected foils from the part of the ACORNS corpus that was
not used for learning. The word cat was matched with the words ball, cow and red; mummy
was matched with the words woman, robin and airplane; banana was matched with the words
edible, robin and airplane. Obviously, the matches for banana are rather poor in terms of num-
ber of syllables and stress pattern, but better matches were not available in the ACORNS cor-
pus. The robin and airplane sentences used in the test with banana were the same as the
sentences used in the tests with mummy. One set of test corpora contained sentences spoken
by the female speaker who also produced the baseline learning material. Using these test cor-
pora corresponds to a situation in which infants listen to words spoken by their primary care-
giver. The other set of test corpora contained speech produced by another female speaker
(speaker 04 in the ACORNS corpus) who was not included in the extended multi-speaker
learning material. Using these corpora simulates the situation in which infants hear speech
produced by an unknown speaker (the test situation in many experimental studies).

During testing, the model listens to the 20 containing the target word and to the three sets
of 20 sentences that contain one of the matched foils. For example, when the representation of
banana is tested, the model hears the 20 test sentences that contain the word banana, 20 sen-
tences with the foil edible, and so forth. For each of the three target words a single listening
preference was computed. For that purpose we summed the normalised activations for the 20
test sentences containing banana and for each of the three sets of 20 foils. Normalisation
diminishes the variation between the test sentences, by scaling all activations such that they
sum to one for each sentence. The between-sentence variation appeared to be small. Omitting
normalisation does not change the results. For the sake of brevity we do not include presence
or absence of normalisation as an additional factor in the design of the experiments. Then, the
average activation for the utterances with foils is subtracted from the average activations of the
utterances with banana. The outcome and thus our main dependent measure is a simulated lis-
tening preference, denoting whether or not known words and foils elicited differentiated

PLOS ONE | DOI:10.1371/journal.pone.0132245 July 28,2015 15/26



@’PLOS ‘ ONE

Modelling the Noise-Robustness of Infants’ Word Representations

responses in the model. This model assessment approach can be likened to infant procedures,
which also frequently rely on the discrimination of two sets of stimuli (for a similar approach,
see [53]). The scale of the simulated listening preference is dependent on the normalisation fac-
tor chosen. We thus present preferences, obtaining by subtracting the response to foils from
those to target words, if they are above zero we conclude that a systematically different
response was elicited by each type of test stimulus.

Results

In the simulation experiments four fixed factors are relevant: test speaker (known or
unknown), past experience (baseline, increased frequency or variable voices, noise level (noise-
free, 10 dB SNR, 5 dB SNR), and how preferences were computed (matching or recognition).
We also included the specific target word and the sampling point as factors to assess their
impact.. While it would have been possible to analyse the results of the simulations with a sin-
gle linear model, it is more insight-lending and useful to present the results from four simpler
statistical models obtained using different parts of the data, since we predicted strong overall
outcome differences that would overshadow any further results. We thus built separate models
for the two matching and recognition interpretation in computing listening preference. For
both matching and recognition we built models for the known and for the unknown test
speaker, since this change in test speaker was expected to lead to an overall lower performance
[54]. The models are summarised in Table A to Table D in S1 File. From these Tables it can be
seen that the keyword (cat, mummy, banana) makes a significant difference, that the condi-
tions during learning (frequency and the presence of between-speaker variability) interact with
the test condition (noise level). Here, we confine ourselves to a verbal and visual presentation
of the results to draw attention to the overall patterns found in our modelling outcomes.

It appeared that the factor sampling point, the point at which the model’s performance was
probed with test items, was almost never significant. The one exception is the experiments with
the same speaker during learning and testing when using the recognition-based assessment.
Closer inspection of the estimate and the standard deviation reveal that the effect, while statisti-
cally significant and thus implying a systematic increase, is very small. In addition, the same
underlying model assessed based on matching did not yield such an outcome. Therefore, we
will not discuss this factor. All visual presentations are based on the listening preferences aver-
aged over the ten measurement points.

Known Test Speaker

We first present the results for the known speaker which are summarised in Fig 3. The left
hand panel shows the results for listening preferences based on matching, where the best
acoustic match stored in memory was considered; the right hand panel shows the same results
for recognition, using only the activations of the intended target word. Both panels contain
three sets of listening preference measures, from left to right: the baseline condition, the
increased frequency condition, where the target word occurred twice as much as in the base-
line, and the multiple speakers condition, in which six new speakers provided the additional
tokens of the target word. Each set of bars contains the results for tests in (from left to right)
clean speech, 10 dB and 5 dB SNR. In both noise conditions, multi-talker noise from a busy caf-
eteria was added to the same test material that was used in the clean speech condition. The
three bars represent the listening preference averaged over the three words, the whiskers indi-
cate the standard deviation across words and measurements. The height of each bar represents
the listening preference, representing the differential responses to target words and foils. The
exact values are difficult to link to infant data due to the great variance in the latter [16, 49], we
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Fig 3. Simulated listening preferences for experiments where the test speaker is known. The two different assessment criteria, general matching-
based preference of target word over foils and word recognition-based preference are depicted separately. In all panels and for each experiment the left bar
depicts listening preferences without added noise, the middle bar corresponds to 10 dB SNR and the right bar to 5 dB SNR.

doi:10.1371/journal.pone.0132245.9003

thus mainly focus on whether or not preferences are above zero. For the corresponding
numeric values, broken down by individual words, see Table E and Table F in S1 File. While
overall the patterns in the left hand and right hand panels are similar, the simulated listening
preferences are much larger when they are based on recognition in comparison to matching.
The outcomes of the linear models can be found in Table A, Table B, Table C, and Table D in
S1 File.

In the baseline condition, where all words occur equally often in the learning material,
based on matching there is only a clear listening preference in clean speech. In 10 dB SNR
there is still a small listening preference, especially for the words ‘mummy’ and ‘banana’ (see
Table E and Table F in S1 File); in 5 dB SNR this only holds for ‘banana’. In the increased fre-
quency condition we see substantially larger listening preferences compared to the baseline
and these preferences remain above zero even in 5 dB SNR. In the multiple speaker condition
we see a decrease of the listening preference in comparison to the baseline. In 10 dB and 5 dB
SNR only the word ‘banana’ shows a preference above zero based on matching in the multiple
speaker condition, similar to the baseline condition.

When listening preferences are computed based on recognition, preferences are overall
larger compared to the matching condition; but the relative differences between learning and
test conditions are smaller than what we have seen in the results based on matching. Prefer-
ences always decrease with decreasing SNR (ie. with increasing noise), but they stay above zero
in all cases.

The finding that the listening preferences are always larger based on recognition compared
to matching is due to the differences in how both were derived from the model’s internal acti-
vations upon hearing the same test material (see Fig 2). When computing the recognition lis-
tening preferences we only look at the activation for one specific target word. Chances that this
activation value is large when the test sentence contains that word, and that the activation
value is small(er) when that word is not contained in the test sentence are high. This situation
is different for matching. In this case, any word can obtain a large activation value, irrespective
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of the contents of the test sentence. It may happen that a test sentence with an unknown key-
word causes a larger activation of an arbitrary word than a test sentence that contains one of
the three singled-out words.

Introducing six additional speakers in the learning material negatively affects the listening
preference values when testing with a known speaker. This is due to the presence of data in the
learning material (and consequently also in the internal representations used for matching)
that is at best irrelevant and possibly even harmful to the task at hand. This holds for matching
and recognition, which both show an overall decrease in preference.

Adding noise had the to be expected detrimental effect on listening preferences. The added
noise affects the HAC representations of the test sentences in ways that are not straightforward
to predict, but that must decrease the correspondence with the representations that were based
on clean speech. The impact of the added noise is stronger in 5 dB than in 10 dB SNR, due to
the greater alteration of the test material.

The (semi-randomly chosen) target words themselves turned out to have an effect, where
‘cat’ performed worse than ‘banana’. The outstanding performance of ‘banana’ may be related
to word length, meaning that it corresponds to a relatively large number of entries in the HAC
vector. However, it should also be noted that the foils for ‘banana’ were not very close matches.
The weak performance of ‘cat’ may be due to the short duration of that word, in combination
with possible overlap in acoustic features between ‘cat’ and other words in the carrier sentences.
Future work will have to explore this issue in an in-depth investigation on the role of specific
words.

Unknown Test Speaker

The results of the simulations with the known speaker during testing might overestimate the
robustness of the representations, because in actual practice infants usually listen to speech
produced by an unknown speaker. To investigate the robustness of the representations when
testing with speech of an unknown speaker, we computed listening preferences with the exact
same material as used in the experiments described above, but spoken by a different female
speaker. The results of these simulations are summarised in Fig 4; for the details of what is dis-
played in the figure, see the explanation of Fig 3.; the corresponding numerical values and lin-
ear models can be found in S1 File (Tables A to D).

The listening preferences with the unknown speaker during test are overall smaller than
with the known speaker. This result was to be expected based on previous experiments [54].
The internal representations are the same as in the tests with the known speaker since they
stem from the same model and they were exposed to the same learning material. The only dif-
ference is that now the test material is produced by an unknown female speaker. All changes in
listening preferences must therefore be due to the fact that the test material now matches less
well with the representations that were learned from the speech of another speaker (or, in the
condition with multiple voices: of other speakers). Although the difference is much smaller
than for the known test speaker, the listening preferences obtained with recognition are larger
than with matching. When the results are based on matching (left panel) the baseline condi-
tion, in which all words were presented equally often, did not show an overall listening prefer-
ence for the known words over the foils. Only ‘banana’ seems to generate a slightly higher
preference in noise-free test sentences and at a noise-level of 10 dB SNR. The effect of the
added noise is small for this word (if it is at all present).

In the increased frequency and multiple speaker conditions the detrimental effect of the
added noise is evident: listening preferences in 10 dB SNR are lower than with clean speech,
and in 5 dB SNR the preferences are even lower. However, it is also clear that the effect of the
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noise is much smaller than with the known test speaker. This finding can be interpreted in two
ways: either the effect of noise on the listening preference for the known speaker is exaggerated,
because every manipulation of the speech of the known speaker should result in a worse match
with her speech in the test. Or the finding shows that the representations of the three singled-
out words are fairly robust since they are adequate for an unknown speaker, and only weakly
affected by the added noise.

The effect of adding additional learning tokens from the primary caregiver is the same as
when adding additional tokens from six other speakers. Both conditions increase the relative
amount of learning material for the singled-out words. Still, the amount of variation contrib-
uted by the additional tokens of the primary caregiver is smaller than the variation added by
the six other speakers. The additional variation contributed by multiple speakers does not
increase the listening preference with the unknown speaker. This suggests that adding variation
to the learning material is not very effective if that variation does not correspond to the idiosyn-
cratic properties of the speech of the test speaker.

The most striking difference between matching and recognition with the unknown speaker
is in the baseline condition. Apparently, the representations of the target words, and by impli-
cation the representations of all words, are already sufficiently powerful—and sufficiently
robust against a speaker change—after processing 21 to 30 learning tokens per word to distin-
guish sentences that contain a target word from sentences that contain foils.

General Discussion

In the present paper we employed a computational model to investigate infants’ early speech
processing abilities in adverse conditions. Our simulations addressed the question which pro-
cesses and knowledge are necessary to explain infant behaviour observed in experimental stud-
ies. To this end, we simulated word detection in two key noise conditions frequently employed
in infant studies, namely 10 and 5 dB SNR. The overall goal was to replicate the behavioural
pattern that infants succeed in most word detection tasks with 10 dB SNR background noise
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and show greater difficulty at 5 dB SNR [1, 4]. Our results show that a model with general-pur-
pose speech processing abilities which does not implement any form of bottom-up stream seg-
regation suffices to explain infants’ abilities as measured in a number of experimental studies.

Three factors that we addressed in this paper, next to building an overall credible model of
infants’ early linguistic abilities, strongly influenced the simulated behaviour and we discuss
each in turn. First, we either used the same speaker during learning and in the test phase or a
completely unknown speaker. The latter case is the standard situation in infant studies. As
expected, based on both previous infant studies [1, 15] and preliminary modelling work [54],
overall performance was much lower when the speaker had not been part of the learning mate-
rial. Nonetheless, the model (partly) succeeded in recognising words in noise even in the typical
test situation with an unknown speaker, lending further credibility to the present modelling
approach.

Second, we assessed the role of previous experience, manipulating the amount of exposure
and whether or not multiple speakers had spoken the target word in the learning phase. Vari-
ability between speakers has repeatedly been suggested to aid the formation of more mature,
and presumably more noise-robust representations [4, 14]. Overall, more experience improved
noise-robustness. However, the impact of previous experience interacted with the first factor,
namely whether or not the test speaker was known. When testing with a known speaker,
increasing the number of sentences spoken by the same speaker proved most beneficial and the
model successfully detected words across noise conditions. Adding more speakers to the learn-
ing material, in contrast, yielded no improvement when the same speaker provided most of the
learning and all of the test sentences.

Third, we compared two possible processes that might underlie infants reactions to presum-
ably known and unknown words. Either infants simply compare acoustic patterns in their
memory to the experimental stimuli, termed matching, or they focus on a specific word and its
meaning, they recognise a word (or its absence). Matching, as defined within this paper, is suf-
ficient to simulate the results of infant studies, and thus might account for the processing strat-
egy employed by infants in the second half of their first year. Recognition proved to be more
noise-robust, which is due to the attentional focus on a specific word and its meaning. The
extent of the simulated noise-robustness exceeded the abilities of 6- to 8-month-olds and is
more in line with abilities infants only display around their first birthday [4]. Multiple other
changes might account for infants’ improved ability to deal with background noise, but consid-
ering the parallel maturation of the attentional system it seems plausible to attribute this to a
change from acoustic matching to targeted recognition. Notably, infants’ abilities not only
improve in the context of ambient noise; word recognition in the presence of a visual
target also advances drastically, as shown for example by Bergelson and Swingley [13]. Matur-
ing attentional skills and a more robust link of acoustic patterns and their meaning can also
account for the type of recognition measured when infants have to focus on the correct image
upon hearing its label.

Our simulations provide an interpretative framework for the small number of behavioural
experiments that investigated the resilience of infants’ speech processing to additive noise, e.g.,
[1, 4]. The first papers on the impact of noise on infant speech processing attributed substantial
importance to auditory stream segregation. It should be noted that more recent work does not
invoke stream segregation as an explanatory mechanism [8]. In the Introduction we explained
why it is unlikely that infants could be able to deploy stream segregation in an experimental set-
ting in which the most powerful tools that adults use for stream segregation, directional hearing
and observing lip movements, were not available. To avoid making unwarranted assumptions
about infants’ abilities, we refrained from implementing stream segregation in our model.
Future work can address directional hearing; behavioural experiments might for example ploy
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several loudspeakers as sources for both the target speech signal and the distracting noise.
Admittedly, additional acoustic measurements are necessary to obtain a specific SNR at the
position of the infant’s head, but at the very least such an experimental set up could answer the
question to what extent infants can use directional hearing when hearing speech in noise. If
infants use binaural hearing to separate signals, they should outperform participants tested in
the manner simulated here, namely with a signal that has been merged a priori and is presented
from one physical source.

In the Introduction we pointed out the tension between behavioural experiments, in which
infants’ skills of the day are measured irrespective of how and when they have been acquired
on the one hand and simulation experiments, in which the emphasis is on the learning process
on the other hand. Arguably, simulation experiments are closer to theories about language
acquisition [29] than most behavioural experiments, since they make all assumptions explicit
and take into account which abilities and experiences led to an observed behaviour in a labora-
tory test. Our simulations add to a comprehensive theory of language acquisition by question-
ing whether the conclusions drawn from behavioural experiments ignore alternative processes
that could have yielded the same observable behaviours. As such, the present work has implica-
tions when interpreting infant data beyond the scope of speech perception in noise.

The way in which audio signals are represented in our model (as sparse vectors in a very
high-dimensional space) and the way in which associations are learned between acoustic and
meaning representations (by means of sparse coding, implemented as Non-negative Matrix
Factorisation) are very different from previous models of language acquisition. However, our
approach is strongly supported by recent findings in neurobiology and neurocognition [41, 42,
46]. The stimuli for learning and for testing consisted of short sentences. Neither during learn-
ing, nor during processing in a test an attempt was made to segment words from the sentences.
If words were presented in isolation, either during learning or in test, the model’s task would
have been considerably easier, due to the fact that the whole acoustic signal is the target. In this
case, performance would have been substantially improved. However, the overall patterns of
results would remain the same.

The results of the simulations showed that it is possible to distinguish between test sentences
that contain a known word and test sentences that contain unknown words (foils) in most test
conditions without segmenting the sentences into words. This corroborates one of the basic
tenets of PRIMIR. An important implication of this finding, that to our knowledge is seldom
discussed in the literature on language acquisition, is that infants can react appropriately to
spoken utterances well before they are able to perform advanced linguistic operations on the
speech signal. This provides a powerful scaffolding structure to bootstrap into language leaving
abstract, symbolic representations to be acquired later, instead of being a necessary precursor
to detecting and reacting to known words. Equally importantly, the model could distinguish
between known and unknown words in noisy speech without applying any form of stream seg-
regation, which suggests that infants do not need to rely on sophisticated segregation capabili-
ties in early language acquisition and still can make use of the information present even in a
noisy speech signal.

With the recognition interpretation of the underlying cognitive process the listening prefer-
ences that we found in tests with 10 dB and 5 dB SNR seem to exceed the abilities shown by
young infants in laboratory experiments [1, 4]. From this we concluded that at least part of the
behaviour observed in these experiments should be attributed to acoustic matching, rather
than to recognition of the meaning of test stimuli, even if the stimuli consist of repeated pro-
ductions of the infant’s name. To disentangle whether infants perform a form of specific word
recognition or general acoustic matching, we suggest to manipulate not the target word but the
foils. When infants have to process a target word, such as their own name or a word that has
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previously been familiarised, the foils can be manipulated in their similarity to other words
which the infant is assumed to know, such as “mommy”. It would further be interesting to
investigate whether infants who are not able to connect putatively known words to the corre-
sponding picture would still show a listening preference for those words relative to acoustically
dissimilar words. Such studies can further illuminate which representations underlie the
observable behaviour in infant experiments.

Our simulations showed that hearing more tokens of a word helps in distinguishing that
word from foils, but the effect differed both depending on whether one or multiple speakers
provided the additional input and whether or not the test speaker was known. This suggests
that while variation in the learning material is relevant, the effect of the variation on some
behavioural measure depends to a large extent on characteristics of the test stimuli. The larger
the mismatch is between the distributions in the learning material and the features of the test
material, the lower the performance will become. In interpreting the results of previous experi-
ments and simulations of the contribution of variation in the learning material (e.g., [19, 21])
and in the design of future experiments, care must be taken to assess the extent to which the
test procedure is hampered or enhanced by the type and amount of variation infants experi-
enced before the lab visit.

This first attempt to simulate speech processing in noisy conditions has many limitations
that need to be addressed in future research. Although the representation of speech in the form
of Mel-Frequency spectra allows to distinguish female and male speakers (mainly based in the
presence or absence of energy in the filters with the lowest centre frequencies), a more explicit
representation of voice pitch might help in separating competing speakers. However, it is quite
possible that this mechanism for stream segregation only becomes effective if other mecha-
nisms, especially those that require some form of understanding and prediction, have become
available. Future simulations should also take into account potential differences between
infants in the way in which they manifest the results of perceptual and cognitive processing.
Specifically, we limited learning to noise-free speech; future work should investigate the impact
of noise in the learning material, since infants are exposed to noisy language input in their
daily lives [1].

In the present work only three words from a fixed lexicon of 15 words were used. For clarity,
we limit ourselves to the presented results, and instead of only discussing averages point to
observed differences between words, namely that the shortest word, ‘cat’ led to substantially
worse performance than the longest word, ‘banana’ (see Table E and Table F in S1 File). While
we observed an effect of the specific words, a detailed investigation requires the use of multiple
words, different lexicon sizes and word combinations, and ideally also the use of multiple lan-
guages to avoid a bias towards one linguistic system. We expect that the overall results pre-
sented here can be replicated, but it is premature to speculate about the origin of the
differences between the words.

HAC+M vectors are reminiscent of distributed representations: The counts in a vector can
be interpreted as connection strength between cell assemblies in the brain. The fact that our
HAC+M vectors are composed of two sub-vectors can be interpreted as representing connec-
tions between regions in the brain (or planes in PRIMIR). In this light, it is interesting that
NMEF learning can be linked to learning in multi-layer perceptrons [55]. Having said this, it
must be added that the representations that are formed by NMF learning cannot be equated to
nodes in a neural network. For this reason it is premature to speculate about possible relations
between the distributed representations in our model and the distributed cohort model pro-
posed by Gaskell and Marslen-Wilson [56] that uses a recurrent neural network to learn associ-
ations between phonetic features, phonemes and words. For the time being our model is only
explicit about representations on the General Perceptual Plane in PRIMIR. The representations
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on higher-level planes, which provide the supervision in the learning process, cannot make any
claim towards specificity or cognitive and neurophysiological plausibility. Extending the model
and the learning procedures such that the language-specific representations become explicit
and plausible is probably the biggest challenge to be met in future research.

Supporting Information

S1 File. Tables displaying the numerical results of a linear models with two each for the
known test speaker condition (matching: Table A; recognition: Table B) and for the
unknown test speaker condition (matching: Table C; recognition: Table D). The final two
tables display simulated listening preferences for both matching (Table E) and recognition
(Table F). Table A, Results of a linear model based on matching when the speaker is known.
Results for the linear model based on matching when the speaker is known. Significance indica-
tors (uncorrected): * p <.05,"* p <.01,*** p <.001. Table B, Results of a linear model based on
recognition when the speaker is known. Results for the linear model based on recognition when
the speaker is known. Significance indicators (uncorrected): * p <.05,"* p <.01,"** p <.001.
Table C, Results of a linear model based on matching when the speaker is unknown. Results for
the linear model based on matching when the speaker is unknown. Significance indicators
(uncorrected): * p <.05,** p <.01,** p <.001. Table D, Results of a linear model based on rec-
ognition when the speaker is unknown. Results for the linear model based on recognition when
the speaker is unknown. Significance indicators (uncorrected): * p <.05,"* p <.01,*** p <.001.
Table E, Simulated listening preferences based on matching. Simulated listening preferences
based on matching (mean and standard deviation) for all conditions. Listening preferences that
are significantly above 0 are indicated (based on an uncorrected one-sided t-Test): * p <.05,"*
p <.01,”** p <.001. Table F, Simulated listening preferences based on recognition. Simulated
listening preferences based on recognition (mean and standard deviation) for all conditions.
Listening preferences that are significantly above 0 are indicated (based on an uncorrected
one-sided ¢-Test): * p <.05,* p <.01,** p <.001.

(PDF)

S2 File. A formal description of all modelling work described in this paper and imple-
mented in the accompanying scripts.
(PDF)
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