English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

An adaptive clustering procedure for continuous gravitational wave searches

MPS-Authors
/persons/resource/persons192124

Singh,  Avneet
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20662

Papa,  Maria Alessandra
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons206570

Eggenstein,  Heinz-Bernd
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192131

Walsh,  Sinéad
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1707.02676.pdf
(Preprint), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Singh, A., Papa, M. A., Eggenstein, H.-B., & Walsh, S. (in press). An adaptive clustering procedure for continuous gravitational wave searches.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-DB9C-5
Abstract
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important postprocessing step because it reduces the number of noise candidates that are followed-up at successive stages [1][7][12]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [11].