Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Fast Solution of the Poisson-Boltzmann Equation with nonaffine Parametrized Boundary Conditions Using the Reduced Basis Method

MPG-Autoren
/persons/resource/persons86253

Benner,  Peter
Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86622

Feng,  Lihong
Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons146070

Kweyu,  Cleophas M.
Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86490

Stein,  Matthias
Molecular Simulations and Design, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1705.08349.zip
(Preprint), 775KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benner, P., Feng, L., Kweyu, C. M., & Stein, M. (in preparation). Fast Solution of the Poisson-Boltzmann Equation with nonaffine Parametrized Boundary Conditions Using the Reduced Basis Method.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-2E32-5
Zusammenfassung
The Poisson-Boltzmann equation (PBE) is a nonlinear elliptic parametrized partial differential equation that arises in biomolecular modeling and is a fundamental tool for structural biology. It is used to calculate electrostatic potentials around an ensemble of fixed charges immersed in an ionic solution. Efficient numerical computation of the PBE yields a high number of degrees of freedom in the resultant algebraic system of equations, ranging from several hundred thousands to millions. Coupled with the fact that in most cases the PBE requires to be solved multiple times for a large number of system configurations, this poses great computational challenges to conventional numerical techniques. To accelerate such computations, we here present the reduced basis method (RBM) which greatly reduces this computational complexity by constructing a reduced order model of typically low dimension. We discretize the linearized PBE (LPBE) with a centered finite difference scheme and solve the resultant linear system by the preconditioned conjugate gradient (PCG) method with an algebraic multigrid (AMG) V-cycle as preconditioner at different samples of ionic strength on a three-dimensional Cartesian grid. We then apply the RBM to the high-fidelity full order model (FOM). The discrete empirical interpolation method (DEIM) is applied to the Dirichlet boundary conditions which are nonaffine in one parameter (the ionic strength) to reduce the complexity of the reduced order model (ROM). From the numerical results, we notice that the RBM reduces the model order from $\mathcal{N} = 2\times 10^{6}$ to $N = 6$ at an accuracy of $10^{-10}$ and reduces computational time by a factor of approximately $8,000$. DEIM, on the other hand, provides a speed-up of $20$ in the online phase at a single iteration of the greedy algorithm.