Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A structure-preserving split finite element discretization of the split wave equations

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1-s2.0-S0096300317308949-main.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bauer, W., & Behrens, J. (2018). A structure-preserving split finite element discretization of the split wave equations. Applied Mathematics and Computation, 325, 375-400. doi:10.1016/j.amc.2017.12.035.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-DAD8-5
Zusammenfassung
We introduce a new finite element (FE) discretization framework applicable for covariant split equations. The introduction of additional differential forms (DF) that form pairs with the original ones permits the splitting of the equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star operator. Our discretization framework conserves this geometrical structure and provides for all DFs proper FE spaces such that the differential operators hold in strong form. We introduce lowest possible order discretizations of the split 1D wave equations, in which the discrete momentum and continuity equations follow by trivial projections onto piecewise constant FE spaces, omitting partial integrations. Approximating the Hodge-star by nontrivial Galerkin projections (GP), the two discrete metric equations follow by projections onto either the piecewise constant (GP0) or piecewise linear (GP1) space. Our framework gives us three schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the dispersion relation with the P1-P1 FE scheme that approximates both variables by piecewise linear spaces (P1). The split schemes that apply a mixture of GP1 and GP0 share the dispersion relation with the stable P1-P0 FE scheme that applies piecewise linear and piecewise constant (P0) spaces. However, the split schemes exhibit second order convergence for both quantities of interest. For the split scheme applying twice GP0, we are not aware of a corresponding standard formulation to compare with. Though it does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much too fast, the discovery of the new scheme illustrates the potential of our discretization framework as a toolbox to study and find FE schemes by new combinations of FE spaces.