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Abstract
Regional climate models provide climate projections on a horizontal resolution in the order of 10 km. This
is too coarse to sufficiently simulate urban climate related phenomena such as the urban heat island (UHI).
Therefore, regional climate projections need to be downscaled. A statistical-dynamical method for the UHI
was developed and applied to provide urban climate results at a high resolution with little computational
costs. For the downscaling, weather situations relevant for the UHI are determined. This is done by combining
objective weather pattern classification based on a k-means cluster analysis of ERA-40 reanalysis data and a
regression-based statistical model of the observed UHI of Hamburg. The resulting days for each weather
pattern are simulated with the mesoscale meteorological model METRAS at 1 km horizontal resolution.
To obtain the average UHI for a climate period, the mesoscale model results are statistically recombined
weighted by the frequency of the corresponding weather patterns. This is done for present-day climate
(1971–2000) using reanalysis data to yield the current climate UHI. For the future climate periods 2036–2065
and 2070–2099 the results of regional climate projections are employed. Results are presented for Hamburg
(Germany). The present day UHI pattern is well reproduced compared to temperature data based on floristic
mapping data. The magnitude of the early night-time UHI is underestimated when compared to observed
minimum temperature differences. The future UHI pattern does only slightly change towards the end of the
21st century based on A1B scenario results of the RCMs REMO and CLM. However, for CLM the number
of days with high UHI intensities significantly increases mainly due to a decrease in near-surface relative
humidity.

Keywords: downscaling, statistical-dynamical downscaling, climate modelling, numerical model, weather
pattern, urban heat island

1 Introduction
Regional climate projections are currently available at
about 10 km horizontal resolution (e.g. Jacob et al.,
2008, Katzfey et al., 2016). For the development of
climate change adaptation strategies for urban areas,
characterizing the urban heat island (UHI) is impor-
tant because its magnitude (up to 10 K under optimal
conditions; Yow, 2007; ∼2.5 K in the summer average
for minimum temperature differences in Hamburg at
densely build-up sites and 0.5 to 1 K in suburban areas;
Schlünzen et al., 2010) can be locally much higher
than the projected temperature changes due to climate
change (2–3 K for Northern Germany at the end of the
21st century assuming the A1B scenario; Daschkeit,
2011). Since the UHI cannot be resolved by ∼10 km
grids regional climate projections need to be further
downscaled.

Downscaling methods can be grouped into three
main types: statistical, dynamical and statistical-dynami-
cal downscaling. For statistical downscaling, a statistical
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relationship between large-scale variables simulated by
a coarser model and a small scale variable is established
(Wilby and Wigley, 1997). Statistical downscaling has
been successfully applied to investigate changes of the
UHI intensity (Wilby, 2003; Wilby, 2008; Hoffmann
et al., 2012). Using this technique, the spatial pattern of
the UHI can hardly be obtained, in particular if there are
only few sites with observational data available. This is
a major drawback when planning climate change adap-
tation measures for cities because spatial information is
needed. Also the impact of adaptation measures on the
UHI can hardly be quantified when using a statistical
downscaling technique.

To dynamically downscale a regional climate projec-
tion to a horizontal grid of about 1 km for a 30-year
period is computationally expensive, especially if the
simulations need to be repeated several times in or-
der to quantify the impact of different adaptation mea-
sures. Hamdi et al. (2014, 2015) use dynamical down-
scaling to refine climate model simulations to a resolu-
tion of 4 km. They further use the near-surface meteo-
rological variables at 4 km resolution to force an urban
surface scheme at 1 km horizontal resolution. However,
this “offline” approach neglects the interactions between
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the finer resolved surface and the coarser meteorologi-
cal forcing. To overcome the disadvantages of the first
mentioned methods, statistical-dynamical downscaling
(SDD) can be applied (Frey-Buness et al., 1995). The
SDD method makes use of the ability of climate models
to simulate the large-scale circulation better than small-
scale processes and assumes that the small-scale mete-
orological variable (e.g. the near-surface temperature,
precipitation) depends on large-scale weather pattern
(WP). High-resolution numerical model simulations are
then to be performed for each WP. To calculate the cli-
matological average, the simulation results are statisti-
cally recombined by weighting with the frequency of the
WPs. The change of the small-scale variable in future
climate is determined by the change in the frequency of
the WPs. SDD methods have been applied to variables
such as temperature (Fuentes and Heimann, 2000),
precipitation (Huebener and Kerschgens, 2007a,b),
and wind speed (Pinto et al., 2010; Najac et al., 2011).
Najac et al. (2011) extended the SDD-concept and in-
troduced within WP variations in the statistical part of
the SDD method. For urban climate, a simple SDD
method has been applied by Früh et al. (2011a,b). The
statistical part of their method is not based on WPs but
on prescribed linear combinations of temperature, wind
speed and relative humidity. The extremes of these vari-
ables are used as initial values to conduct idealized sim-
ulations with a mesoscale model without nesting. The
simulation results are statistically recombined using the
so-called cuboid method to downscale RCM results with
respect to urban heat load in the Frankfurt am Main area.
Due to the simple treatment of the flow conditions (only
two wind directions), the temperature pattern might be
unrealistic because the advection of the UHI is not con-
sidered properly. In addition, no large-scale changes of
the forcing data are considered in any of the simulations.

Apart from the study of Hamdi et al. (2014, 2015),
numerical studies of the UHI usually focus on ideal-
ized meteorological conditions (e.g. Atkinson, 2003,
Früh et al. 2011a,b) or on days with anticyclonic condi-
tions (e.g. Flagg, 2010; Bohnenstengel et al., 2011;
Grawe et al., 2012). However, such meteorological con-
ditions are rare for many cities. It is also questionable
whether only the maximum UHI is of interest, because
it might occur at days where the UHI is less impor-
tant from the point of view of adaptation to climate
change, because the prevailing air temperature is neither
very high (risk of tropical night/ heat stress) nor very
low (risk of frost). Hoffmann and Schlünzen (2013)
showed that high UHI values also occur for WPs differ-
ent from those considered in previous studies. Hence,
simulating only anticyclonic meteorological situations
might not result in a realistic UHI pattern. Thus, weather
situations that are resulting in large UHI values need
to be determined. Hoffmann and Schlünzen (2013)
constructed a weather pattern classification (WPC) to
explain variations in Hamburg’s UHI intensity and ob-
tained 7 WPs for the summer months. However, these
WPs only account for a small part of the UHI variance

because of the low number of WPs and the dependency
of the UHI on small-scale variables. Hence, further in-
formation is needed to subdivide the WPs according to
the strength of the UHI intensity.

The aim of this study is to construct and apply a
SDD method to downscale regional climate projections
to a final resolution of 1 km. For this, weather patterns
are determined that have different characteristics and
relevance for the UHI intensity. The SDD method is
described in detail in Section 2. Section 3 introduces the
RCM data that are used for the SDD method. The setup
of the dynamical simulations that are performed for the
area of Hamburg is presented in Section 4. The results
for current and future climate are given in Section 5,
concluding remarks in Section 6.

2 Statistical-dynamical downscaling
method

The SDD method applied in this study is schematically
presented in Fig. 1. The method aims at determining
the mean seasonal spatial pattern of the nocturnal UHI.
For each season, WPs are determined that represent
the UHI’s day-to-day variability. The focus is on the
area of Hamburg, the clustering method is described by
Hoffmann and Schlünzen (2013). The UHI variance
explained by this WPC is too small to only simulate
the days which are closest to the cluster centers. This is
mainly due to the intended low number of WPs. Usually,
the number of WPs used for SDD methods is higher.
Fuentes and Heimann (2000) used 22, Pinto et al.
(2010) used 55. However, the choice of the number
of WPs is purpose driven and for this study a larger
number of WPs is not optimal, because some of the
resulting WPs could be too similar. This would lead to
problems when detecting the WPs in different RCMs.
Therefore, an approach similar to Najac et al. (2011)
is used. They selected multiple non-consecutive days
within one WP for their simulations. Their selection was
based on 850 hPa u- and v- wind components. The WPs
were subdivided according to the strength of the 850 hPa
wind field. Instead of taking the strength of a certain
classification variable, an estimate for the strength of
the daily UHI intensity within each WP is used in the
present study. Since this estimate has to be calculated
for both the current and the future climate, the observed
UHI cannot be used. Instead a statistical model for the
UHI, similar to that used by Hoffmann et al. (2012),
is constructed. Using a multiple linear regression (2.1),
the UHI is described as a linear function of the daily
averaged values for wind speed FF, cloud cover of the
previous day CC, and relative humidity RH.

ΔTu−r = aFF + bCC + cRH + d (2.1)

ΔTu−r denotes Hamburg’s UHI, described as the dif-
ference of the daily minimum temperature measured at
the German Meteorological Service’s (DWD) urban sta-
tion Hamburg-St. Pauli and the average of the minimum
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Figure 1: Schematic diagram of the statistical-dynamical downscaling method for Hamburg’s UHI. Results are indicated by light green
boxes, methods dashed green boxes and the input data by solid dark green boxes.

temperatures observed at the rural DWD stations Gram-
bek (GR) and Ahrensburg (AH). Different to Hoffmann
et al. (2012) data for all variables of the statistical model
(FF, CC, RH) are taken from the DWD climate refer-
ence station Hamburg-Fuhlsbüttel (FU) in the present
study because of its long and continuous time series. It
should also be noted that St. Pauli station is chosen since
it shows the largest UHI of all DWD sites in Hamburg
based on minimum temperature differences. The statis-
tical model parameters a, b, c, and d are computed for
each WP separately. Therefore, different statistical re-
lationships result for the WPs. This combination of the
WPC and statistical model explains about 50 % of the

UHI variance with a root-mean-square error of about
1.2 K.

By combining the WPC with the statistically mod-
elled ΔTu−r, the “relevant days” can be determined. A
“relevant day” is defined as a day with a strong UHI
intensity, because these days are of largest interest for
planning climate change adaptation measures. A simu-
lation of days with weak UHIs would lead to an unneces-
sary increase in computational cost. Therefore, a thresh-
old UHI intensity (ΔTu−r)Thres = 3 K is introduced. All
days with ΔTu−r ≥ (ΔTu−r)Thres are then considered as
strong UHI days. The chosen threshold leaves 25 % of
the summer days within the data sample. This means
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Table 1: Surface characteristics for the 36 surface cover classes with Albedo α0, thermal diffusivity ks, thermal conductivity νS , soil water
availability (initial values) αq, saturation value for soil water content WK , and roughness length z0.

Surface cover class α0 ks [m2/s] νS [W/mK] αq WK [m] z0 [m]

water 0.10 1.50E-07 100.00 0.98 100.000 f (u∗)
water, fresh, stationary 0.10 1.50E-07 100.00 1.00 100.000 f (u∗)
water, fresh, dynamic 0.10 1.50E-07 100.00 1.00 100.000 f (u∗)
water, salty 0.10 1.50E-07 100.00 0.98 100.000 f (u∗)
mudflats 0.10 7.40E-07 2.20 0.98 100.000 0.0002
ground, bare 0.17 3.80E-07 1.18 0.30 0.015 0.0012
sand 0.20 5.70E-07 1.05 0.10 0.010 0.0003
gravel 0.12 2.76E-07 0.40 0.10 0.010 0.0050
sand dune, with grass 0.20 5.70E-07 1.05 0.15 0.035 0.0100
sand dune, with sparse vegetation 0.20 5.70E-07 1.05 0.15 0.045 0.0500
asphalt 0.09 2.30E-06 1.35 0.50 0.002 0.0003
brick/pavers 0.30 2.30E-06 0.90 0.02 100.000 0.0006
Steel 0.30 4.20E-06 30.00 0.50 0.001 0.0003
bushes, on wet soil 0.20 5.20E-07 1.33 0.65 100.000 0.1000
ground, bare, on wet soil 0.17 7.40E-07 2.20 0.60 100.000 0.0012
grass, short, on dry soil 0.20 5.20E-07 1.33 0.35 0.050 0.0100
grass, short, on wet soil 0.20 5.20E-07 1.33 0.55 100.000 0.0100
grass, long, on dry soil 0.20 5.20E-07 1.33 0.35 0.070 0.0200
grass, long, on wet soil 0.20 5.20E-07 1.33 0.55 100.000 0.0200
cropland 0.20 5.20E-07 1.33 0.40 0.060 0.0400
cropland, irrigated 0.20 5.20E-07 1.33 0.65 100.000 0.0400
cropland, on sandy soil 0.20 5.20E-07 1.33 0.35 0.040 0.0400
heath 0.15 5.70E-07 1.05 0.15 0.423 0.0500
heath, on sandy soil 0.15 5.70E-07 1.05 0.15 0.100 0.0500
bushes, short, on dry soil 0.20 5.20E-07 1.33 0.15 0.060 0.1000
bushes, short 0.20 5.20E-07 1.33 0.35 0.090 0.1000
forest, deciduous 0.17 8.00E-07 2.16 0.60 0.120 1.0000
forest, coniferous 0.10 8.00E-07 2.16 0.50 0.160 1.0000
forest, coniferous, on wet soil 0.10 8.00E-07 2.16 0.70 100.000 1.0000
forest, mixed 0.15 8.00E-07 2.16 0.45 0.120 1.0000
forest, mixed, on dry soil 0.15 8.00E-07 2.16 0.50 0.050 1.0000
forest, mixed, on wet soil 0.15 8.00E-07 2.16 0.50 100.000 1.0000
forest and bushes 0.20 6.50E-07 1.75 0.20 0.100 0.2500
buildings, low 0.18 14.0E-07 2.61 0.50 0.002 0.6000
buildings, high 0.18 23.0E-07 3.44 0.50 0.002 1.2000
mixed surface cover 0.20 5.20E-07 1.33 0.20 0.100 0.10000

that the target variable of the SDD is the average strong
UHI pattern instead of the average UHI pattern. The
“relevant days”, which should be simulated for each WP
are those days with ΔTu−r closest to (ΔTu−r)Thres and
the day with the maximum ΔTu−r ((ΔTu−r)max). Thus
14 days are selected. Since the UHI is not an instanta-
neous event developing in a dynamical model right af-
ter initialization, for each relevant day a 3 day period is
simulated. The longer initialization is needed to ensure
realistic heat storage in the urban fabric, which is one of
the drivers for UHIs.

For the downscaling from the ERA40 reanalysis of
∼115 km horizontal resolution to 1 km, at least a 4 step
nesting would be needed (e.g. 48 km, 12 km, 4 km, and
1 km) when using a refinement factor of 4. The nu-
merical model METRAS is not designed for horizon-
tal resolutions larger than about 20 km (Schlünzen
et al., 2012a). Therefore, an intermediate model would
be needed to simulate the outer domain, as e.g. done by
Huebener and Kerschgens (2007a,b). To avoid this

step, high resolution analysis fields from the ECMWF
are used as forcing. The ECMWF data and the forcing
technique are explained in detail in Section 4. The analy-
sis data are available at a resolution of ∼ 25 km start-
ing in 2006, leaving the period 2006–2010 to determine
the relevant days. During that period, neither observa-
tions of the UHI nor ERA40 based WP data are avail-
able. To extend the ERA40 based WP time series, the
WPs are determined for the ERA-Interim (ERA-INT)
dataset (Dee et al., 2011). ERA-INT is an improved and
frequently updated atmospheric reanalysis dataset start-
ing in 1979. An investigation of the WP time series of
both datasets for the overlapping time period 1979–2001
showed that they are identical for more than 99 % of the
days. The values for ΔTu−r are calculated with the sta-
tistical model (Eq. (2.1)). The selected relevant days and
their corresponding simulation names are listed in Ta-
ble 1. For WP7, both (ΔTu−r)Thres and (ΔTu−r)max are
equal, resulting in only one mesoscale model simulation
required for this WP.
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In order to calculate the average strong UHI, the sim-
ulation results obtained with METRAS at 1 km horizon-
tal resolution (METRAS-1 km) need to be recombined
statistically. For this, the UHI pattern for each relevant-
day is calculated from METRAS-1 km output by sub-
tracting rural temperature values from the temperature
field (Section 5.1). The resulting UHI patterns contribute
to the average strong UHI pattern with a specific weight.
The weight of each simulation is based on the frequency
of occurrence of the corresponding WP and the statisti-
cal modelled UHI (ΔTu−r , Eq. (2.1)). The UHI pattern
of a given day with ΔTu−r ≥ 3 K is a linear combina-
tion of the two UHI simulated patterns UHI((ΔTu−r)max)
and UHI((ΔTu−r)Thres), which are obtained for each WP.
Consequently, the weights for the kth WP also depends
on the number of strong UHI days Nstrong for the cor-
responding WP (Eq. (2.2)) and the difference between
the maximum UHI (ΔTu−r)max and the threshold UHI
(ΔTu−r)Thres, which is denoted as Rstrong (Eq. (2.3)).

Nstrong(k) =
∑

ΔTu−r∈WP(k)

{
1 if ΔTu−r ≥ 3 K
0 if ΔTu−r < 3 K

(2.2)

Rstrong(k) = (ΔTu−r)max(k) − (ΔTu−r)Thres(k) (2.3)

The absolute differences between ΔTu−r ≥ 3 K and
(ΔTu−r)max as well as between ΔTu−r ≥ 3 K and
(ΔTu−r)Thres are normalized by Rstrong then summed up
for each WP. These sums are then divided by Nstrong to
yield the averaged non-dimensional differences Diffmax
(Eq. (2.4)) and DiffThres (Eq. (2.5)) assuming Nstrong(k)
to be greater than 0, which is true in the present study.

Diffmax(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

ΔTu−r≥3 K∈WP(k)

(ΔTu−r − (ΔTu−r)Thres(k))
Rstrong(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

· (Nstrong(k))−1

(2.4)

DiffThres(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

ΔTu−r≥3 K∈WP(k)

((ΔTu−r)max(k) − ΔTu−r)
Rstrong(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

· (Nstrong(k))−1

(2.5)

These averaged differences represent the weights of both
simulations within each WP. The final weights Wmax
and WThres are calculated by multiplying Eq. (2.4) and
Eq. (2.5) with the corresponding relative frequency of
Nstrong.

Wmax(k) = Diffmax(k) ·
Nstrong(k)

K∑
i=1

Nstrong(i)

(2.6)

WThres(k) = DiffThres(k) ·
Nstrong(k)

K∑
i=1

Nstrong(i)

(2.7)

Days with ΔTu−r > (ΔTu−r)max are treated as days with a
ΔTu−r = (ΔTu−r)max since an extrapolation of the pattern

is not possible. This case can occur because (ΔTu−r)max
is only determined in the period 2006–2010 and because
large values of (ΔTu−r)max could occur in the future
climate projections. Thus, UHI changes from current to
future climate might be slightly underestimated.

The statistically recombined UHI pattern is com-
puted by multiplying Wmax and WThres with the corre-
sponding simulated UHI patterns and summing up the
resulting patterns. For the current climate (1971–2000),
the weights are calculated from the WPs based on the
ERA40 data and the statistically modelled UHI val-
ues computed with DWD observations from Hamburg-
Fuhlsbüttel. To determine changes in the UHI pat-
tern due to climate change, the weights are calcu-
lated for the different RCM results, described in Sec-
tion 3. In this study, changes between the current cli-
mate period (1971–2000) and two future climate periods
(2036–2065 and 2070–2099) are investigated. Using the
introduced SDD method, the average strong UHI pattern
can change due to frequency changes of the WPs as well
as due to changes in the distribution of statistically mod-
elled strong UHI values within the corresponding WP.

3 Regional climate model data

As used by Hoffmann et al. (2012) and Hoffmann and
Schlünzen (2013), data from the regional climate sim-
ulations conducted with CLM (Hollweg et al., 2008)
and REMO (Jacob et al., 2008) are used as input for
the downscaling. Both RCMs are driven with the SRES
A1B projections from ECHAM5-MPIOM (Roeckner
et al., 2003; Jungclaus et al., 2006). The REMO sim-
ulations have been conducted by applying a two-step
nesting. Since the domain with the finest grid is smaller
than the domain used for the WPC, the WPs are deter-
mined from the coarser simulations (∼50 km). The vari-
ables for the statistical model are determined from the
high-resolution simulations (∼ 10 km).

Schoetter et al. (2012) evaluated the CLM and
REMO results for the metropolitan area of Hamburg.
For both RCMs, considerable biases in some of the vari-
ables used for the statistical model of the UHI have
been found for the present climate. These biases also
lead to biases in the statistically modelled UHI (Hoff-
mann et al., 2012). Therefore, the RCM data are bias-
corrected with ERA-40 data following Schoetter et al.
(2012), by applying a quantile-mapping method similar
to Piani et al. (2010). A problem appearing when using
the bias-correction for the SDD method is that the local
variables, and therefore the statistically modelled UHI,
might not be consistent with the WPs after the bias cor-
rection. In future studies, it should be tested if the bias-
correction could be done for each WP separately. Hoff-
mann and Schlünzen (2013) also showed that there
are biases in the frequency of the WPs in the RCM re-
sults. A bias correction method for the daily atmospheric
patterns is, however, not yet available. Only the WP fre-
quencies could be bias-corrected, as suggested by De-
muzere et al. (2009). This is not applicable for the SDD
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method presented in this study, because in the calcula-
tion of the weights (Eq. (2.6) and Eq. (2.7)), the WPs
and the statistically modelled UHI depend on each other.
Hence, for the present study only the biases in the sur-
face variables, which go into the statistical model, are
corrected as described in Schoetter et al. (2012).

4 Dynamical simulations

4.1 Mesoscale model

The mesoscale transport and fluid model METRAS
(Schlünzen, 1990; Lüpkes and Schlünzen, 1996) is
a three-dimensional non-hydrostatic mesoscale numeri-
cal atmospheric model. It has been previously applied to
Germany (Schlünzen, 1992; Renner and Münzen-
berg, 2003; Schlünzen and Katzfey, 2003; Schüler
and Schlünzen, 2006; Schlünzen and Meyer, 2007;
Bohnenstengel, 2011, Buschbom et al., 2012), Spain
(Augustin et al., 2008), China (Wu and Schlünzen,
1992; Sheng et al., 2000), coastal areas (Niemeier and
Schlünzen, 1993; Boettcher et al., 2015), the Arctic
(Dierer and Schlünzen, 2005; Hebbinghaus et al.,
2007; Lüpkes et al., 2008; Ries et al., 2010) and the
urban climate of London (Thompson, 2008; Grawe
et al., 2012) with horizontal resolutions ranging from
1 km to 18 km. A detailed description of METRAS is
given in Schlünzen et al. (2012a). The dynamic equa-
tions solved in METRAS are based on the anelastic and
Boussinesq approximated primitive equations, resulting
in prognostic equations for the three wind-components
u, v and w, potential temperature and specific humidity.
Microphysical cloud processes are parameterized with
a Kessler liquid-only scheme (Kessler, 1969), using
prognostic equations for cloud water content and rain
water content. The radiation parameterization is depen-
dent on the existence of liquid water in the model do-
main. In cloud free situations, the longwave and short-
wave radiation balance is computed only at the surface.
In that case, a constant cooling rate of 2 K/day at day-
time and 3 K/day at nighttime is assumed in the atmo-
sphere. With clouds in the model domain, the radiation
fluxes at the surface as well as in the atmosphere are
determined with a two-stream approximation scheme.
The equations are numerically solved in flux form on an
Arakawa-C-grid (Mesinger and Arakawa, 1976), where
the wind components (u, v, and w) are shifted by half a
grid point compared to the grid points of scalar quanti-
ties.

The surface layer similarity theory is employed for
the calculation of sub-grid scale turbulent fluxes in the
surface layer (z ≤ 10 m). The flux averaging method is
applied for different fractions of surface cover within a
grid cell. It is implemented using the blending height
concept (Claussen, 1991; von Salzen, 1996). The dif-
ferent surface cover classes are described in Section 4.2.
For water surfaces, the roughness length is a function
of wind speed and in particular of the friction velocity
(Brutsaert, 1972).

The vertical turbulent fluxes above the surface in
the stable and neutrally stratified boundary layer are
parameterized using a mixing length scheme based on
Herbert and Kramm (1985). For unstable stratification,
the non-local countergradient scheme is used (Lüpkes
and Schlünzen, 1996) allowing mixing of momentum,
heat and moisture counter the local gradient.

To calculate the surface temperatures TS , the force-
restore method by Deardorff (1978) is applied. The
equation for the surface temperature tendency can be
written as:

∂TS

∂t
=

2
√
πks

νshθ

{
Bs − Bl + cpρ0u∗θ∗ + l21ρ0u∗q∗

−
√
πνs

TS − TS (−hθ)
hθ

}
(4.1)

The first two terms on the right hand side correspond
to the shortwave and longwave radiation budget at the
surface.

Term three in Eq. (4.1) accounts for the surface tem-
perature change due to the sensible heat flux, which de-
pends on the heat capacity cp, the density of the air ρ0
and the turbulent heat flux u∗θ∗, where u∗ and θ∗ denote
the friction velocity and the scaling value of tempera-
ture, respectively.

The fourth term corresponds to the temperature
change due to the latent heat flux, which depends on
the enthalpy of vaporization l21 and the turbulent humid-
ity flux, where q∗ denotes the scaling value of specific
humidity. The last term on the right hand side reflects
the ground heat flux, i.e. heat release or heat storage de-
pending on the soil and surface cover characteristics, the
depth of the daily temperature wave hθ and thermal con-
ductivity of the soil νS . Since each simulation conducted
in this study is done for a 3 day period the temperature at
the depth of the daily temperature wave TS (−hθ) is kept
constant at its initial value. For the specific humidity at
the surface, a simple budget equation is applied (Dear-
dorff, 1978).

In the METRAS version applied, no additional ur-
ban canopy parameterization is implemented as done by
Thompson (2008). Therefore, the influence of buildings
on the radiation within street canyons (e.g. shading and
radiative trapping) as well as on the flow field within the
canopy layer is not considered. Furthermore, the anthro-
pogenic heat release is neglected. Hence, only urban ef-
fects due to the different surface characteristics such as
heat storage, water availability, evaporation characteris-
tics and roughness are simulated. A detailed description
of the surface characteristics as used in the present study
is given in the next Section.

4.2 Model domain and land use

The dynamical simulations are conducted by forcing
METRAS at 4 km horizontal resolution (METRAS-
4 km) with ECMWF analysis data and using these re-
sults to force a simulation with 1 km horizontal resolu-
tion (METRAS-1 km). The boundaries of both domains
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Figure 2: Map indicating the boundaries of the METRAS-4 km domain (red) and METRAS-1 km domain (blue).

are shown in Fig. 2. The outer domain has a dimension
of 175×156 grid cells (700 km×624 km) covering north-
ern Germany, and parts of Denmark, the Netherlands,
Sweden and Poland. The dimension of the inner domain
is 194 × 191grids cells (194 km × 191 km) and it covers
the metropolitan area of Hamburg including parts of the
North Sea and Baltic Sea. The vertical grid of both do-
mains follows the terrain and consists of 34 vertical lev-
els. The lowest model level is at 10 m above ground. The
vertical grid spacing is 20 m up to a height of 90 m above
ground. Above that level, the grid spacing increases with
a constant stretching factor of 1.15. The top of both do-
mains is at 12511 m.

To construct surface cover data (lower boundary
condition for METRAS), land-use data from different
sources are used, ranging from the “European Com-
mission programme to Coordinate Information on the
Environment“ (CORINE) dataset from 2006, a digital
basic map (ATKIS), information on building outlines
to a detailed biotope dataset for the state of Hamburg.
For METRAS-4 km, the land-use data are aggregated
into 10 land-use classes including one urban land-use
class. For the METRAS-1 km simulations, the land-use
data are aggregated to 36 surface cover classes. Flagg
et al. (2011) comprehensively investigated urban land-
use types, such as “block perimeter development”, and
determined the fraction of buildings, sealed surfaces (as-
phalt, concrete, brick/pavers), as well as urban vegeta-
tion (e.g. street trees, courtyard vegetation and so on).
These fractions have been used to assign the land-use
data to the appropriate surface cover classes. Build-
ings are divided into high buildings and low buildings.
The physical parameters attributed to the surface cover
classes are given in Table 1. Details on the attribu-

tion of the parameter values are given in Schlünzen
et al. (2012b). Fig. 3 shows the fraction of buildings
and adjacent surfaces, which include the surface cover
classes “high buildings”, “low buildings”, “asphalt”,
“concrete”, “brick/pavers” and “steel”. Here, the sealing
gradient of Hamburg (highest values near the centre of
the city and in industrial and harbour areas, lower values
in the outskirts of the city) is well visible. In addition,
it shows that even in the centre of Hamburg, the sealed
fraction is well below 1. This is due to the presence of
water (e.g. canals), street trees and courtyard vegetation
even in the centre of the city.

4.3 Forcing

To simulate the selected meteorological situations, ME-
TRAS needs to be forced with interpolated obser-
vational data or model results of coarser resolution.
Analysis data provided by the ECMWF (ECMWF,
2009; 2010) are suitable for this purpose (Ries et al.,
2010). ECMWF-analyses are available every six hours
(00 UTC, 06 UTC, 12 UTC, and 18 UTC). The hori-
zontal resolution varies according to the resolution of
the actual ECMWF forecast model. From 2006 to Jan-
uary 2010, the grid resolution is T799L91, which corre-
sponds to a horizontal resolution of ∼ 25 km and 91 ver-
tical levels. The model levels use terrain following pres-
sure coordinates. The resolution increased to T1279L91
(∼ 16 km) starting end of January 2010. Hence, simula-
tions for 2010 have finer forcing data than the rest of
the simulations. Forced variables are potential tempera-
ture, horizontal wind components and specific humidity.
Liquid and ice water content are added to the specific



8 P. Hoffmann et al.: Statistical-dynamical downscaling of the urban heat island Meteorol. Z., PrePub Article, 2016

Figure 3: Fraction of buildings and adjacent sealed surfaces in a 1 × 1 km2 grid cell as a sum of the surface cover classes: high buildings,
low buildings, asphalt, concrete, brick/pavers and steel from METRAS-1 km data.

humidity. This allows METRAS to develop clouds con-
sistent with its model physics. A linear interpolation of
the forcing data to the METRAS grid is made.

For water temperatures, the optimum interpolation
sea surface temperatures (OISST) analysis dataset (Rey-
nolds et al., 2002), provided by NOAA, are used. It
consists of weekly averaged SST data with a spatial
resolution of 1° (∼110 km). In analogy to the atmo-
spheric variables, the SSTs are interpolated horizontally
to the corresponding METRAS grid points. The temper-
atures of rivers and lakes are estimated using interpo-
lated SSTs through the continent (Bungert, 2008) and
height corrected using the standard atmosphere lapse-
rate of −0.0065 Km−1. The temperatures at the depth of
the daily temperature wave, which are required by ME-
TRAS, are set to be equal to the water temperatures, be-
cause no reliable soil temperatures have been available
for this study.

Since METRAS is initialized with a 1D profile that
is homogenously distributed over the whole domain and
height corrected within a diastrophy phase using a dy-
namical initialization, an averaged profile is determined
from forcing data. After the diastrophy phase informa-
tion from the coarser data is forced onto the finer grid so-
lution using the nudging technique. For this, a so-called
forcing term is added to the prognostic equations for po-
tential temperature, specific humidity, u- and v-velocity
(Eq. (4.2)).

Ψ f = Ψm + δ(Ψl − Ψm) (4.2)

with

δ = νΔt (4.3)

Here Ψm is the original value of a prognostic variable,
Ψl is the value of the variable in the forcing data, Ψ f
is the resulting value after the forcing, and δ is the
weighting factor which depends on the time step Δt
and the nudging coefficient ν. For the first hour after
the initialization, ν = ν0 (homogenous forcing) is set
to 0.001 s−1. This corresponds to a characteristic time
of about 17 minutes, implying that the resulting values
are equal to the forcing value after 17 minutes. The
homogenous forcing lasts for 1 hour of integration time.
Thereafter, the forcing decreases within the domain and
the nudging coefficient becomes:

ν(i) = ν0(i − tanh(
af

N f − 3
i)) (4.4)

In this study, af and N f are set 0.4 and 4 respectively.
The nudging coefficient depends on the grid point dis-
tance to the lateral and upper boundaries. The decrease
in forcing towards the inner of the model domain makes
sure that the METRAS model can reproduce small-scale
meteorological features, but still accounts for large-scale
changes due to the relatively strong forcing at the bound-
aries. Since the forcing data are not available for every
model time step, they are linearly interpolated in time.
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Figure 4: Location and WMO number of the SYNOP stations used for the evaluation of the dynamical simulations.

4.4 Evaluation of dynamical runs

An advantage of the downscaling method introduced in
the present study is that model results can be evalu-
ated against observed data. Most of the dynamical and
statistical-dynamical downscaling techniques do not al-
low this, because they are forced with climate projec-
tions and not with analysis or reanalysis data. In this
study, the evaluation focuses on hourly values of near
surface data.

4.4.1 Observational data

In this study, data measured at SYNOP stations oper-
ated by DWD are used for model evaluation. SYNOP
stations provide hourly values of 2 m temperature, 2 m
dew point, sea level pressure, cloud cover, 10 m wind
speed and direction. In the framework of this study, only
stations with measurements available for at least 95 % of
the time for the period between 2006 and 2010 are used.
This assures the comparability of the evaluation results
between the different simulations. In total, 10 stations
match that criterion (Figure 4).

4.4.2 Evaluation method

There are several ways to evaluate model results. A well-
established approach is the comparison of model esti-
mates with near-surface observations (Cox et al., 1998;
Schlünzen and Katzfey, 2003; Ries and Schlün-
zen, 2009). The model results are horizontally inter-
polated to the location of the corresponding station by

using bi-linear interpolation. The simulated meteoro-
logical variables at the first model level in 10 m above
ground are used in the present evaluation, because the
corresponding gird-averaged values in 2 m above ground
cannot be reliably determined due to the use of the
flux aggregation approach. The focus of the evaluation
presented in this section is on the variables tempera-
ture, relative humidity, wind speed, and wind direction.
Temperature is chosen because the target parameter of
the statistical-dynamical downscaling, the UHI is a hor-
izontal temperature difference. Relative humidity and
wind speed are chosen, because Hoffmann et al. (2012)
demonstrated that both parameters are important for the
strength of Hamburg’s UHI. Usually, other parameters
related to atmospheric moisture content, such as water
vapour pressure or dew point are evaluated, because the
error in the simulated relative humidity is not only due to
shortcomings in the simulation of the hydrological pro-
cesses. However, these parameters are only weakly cor-
related to the UHI (Hoffmann et al., 2012). Therefore,
it is more important to accurately simulate the relative
humidity. The wind direction is important for advection
of the UHI. Statistical measures are used to quantita-
tively evaluate the model performance. Following the
model evaluation guideline of COST728 (Schlünzen
and Sokhi, 2008), the differences in the means of a vari-
able (BIAS; Eq. (4.5)) and the hit-rate (HITR; Eq. (4.6))
are calculated.

BIAS = M̄ − Ō (4.5)
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HITR =
1
N

N∑

i=1

niwithni

{
1 if |Mi − Oi| ≤ D
0 else

(4.6)

Here, Oi and Mi denote the observation and the corre-
sponding model result, Ō and M̄ denote the correspond-
ing means, and N is the sample size. The BIAS indicates
whether a variable is generally overestimated or under-
estimated and if so, to what extent. The HITR indicates
how often the model results lie within the demanded
forecast accuracy, a given predefined uncertainty range
to the observed value that also accounts for the observa-
tion uncertainty. The optimal value for HITR is 1, which
indicates that all model results lie within the uncertainty
D of the observation and the minimum value is 0, which
indicates that none of the model results is within the un-
certainty of the observations. The values for D for tem-
perature (2 K), wind speed (1 ms−1 for ff < 10 ms−1 and
2.5 ms−1 for ff > 10 ms−1), and wind direction (30°) are
taken from Cox et al. (1998). For temperature and wind
speed, they are close to the findings of Lengfeld and
Ament (2012) and Lengfeld (2012), who, using a sen-
sor network, investigated the representativeness of 2 m
temperature and wind speed over heterogeneous terrain.
For instance, they found that temperature differences be-
tween stations (computed every minute) can be 3 K or
higher on a distance of about 2 km in a heterogeneous
terrain. For relative humidity, the value of D is set to 5 %.

The measures for wind direction are calculated dif-
ferently to the other variables. The mean wind direction
is computed by calculating the u- and v-component of
the velocity vector using the wind speed. Thereafter, u
and v are averaged component-wise. The average wind
direction is the direction of the resulting vector. The
wind direction cannot be measured accurately for low
wind speeds. Hence, only wind data for measured wind
speeds > 1 ms−1 are used for the evaluation. To visualize
the results, the measures calculated for every station are
averaged over all stations.

In addition to the strict comparison of observations
and model results, a so-called persistence forecast is
computed as a benchmark for the skill of the model
result. For the persistence forecast, the observations of
the initial day are used as a forecast for the following
days. During anticyclonic conditions with weak large-
scale forcing, the model could perform worse than the
persistence forecast. In such meteorological situations,
the dependency of the model results on the initial con-
ditions and the boundary conditions at the surface, such
as the water and soil temperatures or surface cover data,
is very large. For instance, surface temperature gradients
could lead to development of a local circulation not ob-
served in reality and thus being an artefact of the initially
selected soil and water temperatures.

4.4.3 Evaluation results

The statistical measures are calculated for both ME-
TRAS-4 km and the METRAS-1 km simulations based

on 10 stations. The results for day 2 of the simula-
tions are displayed in Fig. 5. The largest differences
between both resolutions are found for the tempera-
ture and the wind direction. The results for both resolu-
tions are only marginally different for relative humidity
and wind speed. On average, METRAS-1 km performs
slightly better for the wind speed (Fig. 5e,f). The simu-
lation of the wind direction improves in the higher res-
olution model experiment as well. The HITR improves
from 0.40 to 0.44 (Fig. 5g) and the averaged BIAS from -
30° to -10°. However, the averaged absolute BIAS is only
slightly reduced. For relative humidity, METRAS-4 km
shows almost no difference in performance regarding
the average HITR (Fig. 5c). The averaged BIAS is only
1 % for METRAS-4 km, while METRAS-1 km overes-
timates the relative humidity by almost 7 % (Fig. 5d).
Overall, 4 simulations with METRAS-1 km show a
BIAS of more than 10 %. The higher relative humidity
might be a reason for the lower temperatures (Fig. 5b)
and lower HITR for temperature (Fig. 5a) compared
to METRAS-4 km. The HITR of METRAS-1 km is re-
duced to the level of the persistence forecast. For the rest
of the variables both METRAS-1 km and METRAS-
4 km perform better than the persistence forecast when
comparing HITR. The averaged absolute BIAS of the
METRAS simulations is lower for all variables.

5 Statistically-dynamically downscaled
average strong summer urban heat
island

5.1 Current climate

The UHI needs to be calculated for each simulation
separately to statistically recombine the results of the
dynamical simulations. Generally, there are two meth-
ods to determine the UHI from one simulation. The
first method is to conduct two simulations, one with
the actual surface cover and one without the urban sur-
faces, and subtract both simulation results from each
other (e.g. Hjemfelt, 1982; Hafner and Kidder, 1999;
Zhou and Shepherd, 2009; Grawe et al., 2012). This
method would double the computational cost and ad-
ditional problems arise, such as the composition of the
non-urban surface cover. Hence, it is not applicable for
the present study. The second method involves subtract-
ing the temperature at rural grid points from the whole
temperature field (e.g. Flagg, 2010). Since this method
does not require additional simulations and is straight
forward to compute, it is used in context of this study.
However, the choice of the rural grid points can strongly
impact the calculated UHI (e.g. artificially strong UHI
due to the presence of cold pools at the rural grid points).
A comparison of the magnitude of simulated and ob-
served UHI is therefore challenging.

The temperature values in 10 m above ground from
the grid points closest to the two DWD stations Gram-
bek and Ahrensburg are averaged to obtain a rural tem-
perature value. To compare the numerically simulated
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Figure 5: HITR and BIAS of (a,b) temperature, (c,d) relative humidity, (e,f) wind speed and (g,h) wind direction for METRAS simulations
of model day 2. Solid lines indicate the mean (black) of HITR and BIAS, and mean absolute BIAS (blue) of METRAS-1 km simulations.
Dashed lines indicate the mean (black) of HITR and BIAS and mean absolute BIAS (blue) of METRAS-4 km simulations. Dotted lines
indicate the mean (black) and mean absolute BIAS (blue) of the persistence forecast.
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Figure 6: Simulated time series of the urban-rural temperature difference ΔTu−r from all 13 simulations (Table 1) conducted with METRAS-
1 km. Black solid line indicates the unweighted average of all simulations.

Table 2: List of relevant days and their corresponding statistically
modelled UHI values ΔTu−r. The number within the simulation
names denotes the WP number, while the ending denotes maximum
UHI day (M) or the day with an UHI closest to the threshold UHI (T).

Simulation name Date ΔTu−r (K)

WP1M 17-Jun-2007 4.6
WP1T 22-Jun-2009 3.0
WP2M 09-Jul-2007 3.3
WP2T 19-Aug-2007 3.0
WP3M 05-Jul-2006 5.7
WP3T 01-Jul-2009 3.0
WP4M 01-Aug-2009 4.0
WP4T 18-Jul-2009 3.0
WP5M 17-Aug-2008 4.1
WP5T 18-Jun-2008 3.0
WP6M 11-Jun-2007 5.2
WP6T 17-Jul-2009 3.1
WP7M 06-Jun-2009 3.2

UHI values with the statistically modelled UHI (Sec-
tion 2) and to investigate the temporal variability of the
UHI intensity, the temperature in 10 m above ground
close to the DWD station Hamburg-St. Pauli is used to
represent the urban temperature as in Hoffmann et al.
(2012). The time series of the simulated urban-rural tem-
perature differences ΔTu−r obtained from the METRAS-
1 km simulations is shown in Fig. 6. The urban-rural
temperature differences ΔTu−r are quite different for dif-
ferent WPs. All differences are smaller than the corre-
sponding statistically modelled values as shown in Ta-
ble 2. Possible reasons for this inconsistency are given
in Section 6.

Nevertheless, the ΔTu−r time series shows a typical
diurnal cycle of the temperature differences (Oke, 1987)
on day 2 and day 3. Neglecting the frequency of occur-
rence, the average of all simulations shows positive dif-
ferences from noon to the early morning (around sun-
rise) with a maximum between 8 p.m. and 12 a.m. (mid-
night) local standard time (LST). Negative values of the
UHI are simulated between 7 a.m. and 12 p.m. (noon)
LST. After sunrise, rural areas heat up at higher rates

than urban areas. This so-called urban cool island (UCI)
is mainly due to the high thermal conductivity and dif-
fusivity of urban surfaces. More heat is taken up by the
sealed surfaces in urban areas compared to the surfaces
in rural areas. This leads to a reduction of the heating
rate of the air during the morning hours. The UCI ef-
fect has also been found for Hamburg by Schlünzen
et al. (2010) by analysing the DWD station data. They
showed that on average, the daily maximum temperature
within the city is slightly lower compared to Grambek,
especially in summer. Later during the day, this effect
becomes less important and disappears after sunset.

Investigation of the individual time series reveals
substantial temporal variability of UHI. The large pos-
itive and negative values throughout the four simulation
days are mainly resulting from clouds (i.e. increase in
downward long-wave radiation). Due to their random
nature, the presence of clouds renders the calculation
of the UHI challenging, especially due to the low num-
ber of grid points that have been used to calculate the
UHI. Using data from only one model output time step
to compare simulations could result in large differences
not due to urban effects, but due to the presence of small
clouds. Therefore, the nocturnal UHI intensity is defined
as the average temperature difference between 8 p.m.
and 12 a.m. LST, when the averaged temperature dif-
ference is largest (thick line in Fig. 6). The simulated
(ΔTu−r)max is lower than (ΔTu−r)Thres for WP2 and WP5
(not shown). This could be due to the accuracy of the sta-
tistical model, which was used to identify the days that
are simulated. It explains only 50 % of the UHI vari-
ance and has a RMSE of 1.2 K (Section 2). This dif-
ference is larger than the difference between (ΔTu−r)max
and (ΔTu−r)Thres in the corresponding WPs. However,
the effect on the statistically recombined average strong
UHI pattern is small, because the sum of the weights of
WP2 and WP5 is only 0.06.

To compute the average strong UHI pattern (Sec-
tion 2), the frequency of the ERA40 WPs and the sta-
tistically modelled UHI based on the observations from
Hamburg-Fuhlsbüttel in the period 1971–2000 are used
to calculate the weights for the different simulations ac-
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Figure 7: Statistically recombined average strong UHI (8 p.m. to 12 a.m. LST) pattern using data for the period 1971–2000 for summer
METRAS-1 km simulations.

cording to Eq. (2.6) and Eq. (2.7). Thereafter, the in-
dividual UHI patterns are multiplied with their corre-
sponding weights (Section 2). For 1971–2000, on av-
erage 24.9 strong UHI days (statistically modelled UHI
≥ 3 K) occur in the summer season. The average strong
UHI pattern calculated from METRAS-1 km results is
displayed in Fig. 7. The maximum of the UHI inten-
sity (up to 1.2 K) is found in the harbour and in down-
town Hamburg. This is due to the large fraction of sealed
surfaces in this area. The river Elbe also contributes to
the high UHI values in this area due to weak noctur-
nal cooling of the air over water bodies, which have a
constant temperature throughout each simulation. This
effect is responsible for the increased nocturnal tem-
peratures in the western part of the city, i.e. where
the river is relatively wide. A detailed examination of
the pattern reveals that structures such as the two air-
ports within Hamburg namely Fuhlsbüttel (north of the
Alster lake) and Finkenwerder (western part of Ham-
burg), can be identified. Both areas show higher temper-
atures than their surroundings. Relatively high temper-
atures are simulated in the rural southeast of Hamburg.
This might again be due to the Elbe river, which flows
through that area. In addition, the elevation of the area
is low compared to the rural reference grid points. After
applying a height correction to the results the UHI inten-
sity is close to 0 K in this area except for the grid points
along the river (Fig. 5.14 in Hoffmann, 2012).

5.2 Evaluation of the UHI pattern

Only few meteorological observations are available to
evaluate Hamburg’s UHI pattern. However, the observed

temperature differences between the rural station Gram-
bek and six stations in and around Hamburg are cor-
related with the simulated UHI pattern as it was also
done by Bechtel and Schmidt (2011) for the tem-
perature proxy data. For the comparison, as derived
by Schlünzen et al. (2010), the annually averaged
UHI and the summer-averaged UHI are used. Addi-
tionally, the UHI pattern constructed by Bechtel and
Schmidt (2011), which used floristic mapping data, is
compared with the numerically simulated UHI patterns.
The so-called Ellenberg indicator values for tempera-
ture (EIT) are used as proxies for the temperature distri-
bution within Hamburg. As described by Bechtel and
Schmidt (2011), a linear regression with the UHI values
given by Schlünzen et al. (2010) as predictor and the
EIT as the predictand is computed to receive Ellenberg
based UHI values (UHIE). Therefore, both UHI datasets
are not fully independent. The UHIE dataset covers the
area of the city of Hamburg on a 1×1, km2 grid, without
water bodies, because floristic mapping data do not exist
for water-covered areas. For the calculation of the spa-
tial correlation, the UHI pattern simulated by METRAS
is linearly interpolated onto the grid of the UHIE dataset.

For the 3 different observations (annual- and summer-
averaged UHI from DWD measurements, UHIE dataset),
the spatial correlation coefficient is calculated. All cor-
relations are significant at α = 0.1. The highest cor-
relation with r = 0.8 is obtained for the comparison
between the METRAS-1 km result (Figure 7) and the
summer-averaged UHI followed by the annual averaged
UHI (r = 0.76) and the UHIE (r = 0.74). The latter is
significant at α = 0.05 due to the larger sample.
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Table 3: Spatial correlation coefficients determined for the compar-
ison between the UHIE pattern derived by Bechtel and Schmidt
(2011) and the UHI patterns for the different METRAS-1 km simu-
lations. All values are statistically significant at α = 0.05.

Simulation name Correlation coefficient

WP1M 0.63
WP1T 0.49
WP2M 0.51
WP2T 0.61
WP3M 0.60
WP3T 0.51
WP4M 0.70
WP4T 0.36
WP5M 0.47
WP5T 0.48
WP6M 0.60
WP6T 0.61
WP7M 0.48

The comparison with observed data can be used to
identify the simulation that shows the best agreement
with observations (Table 2). For the comparison with
the observed UHI (Schlünzen et al., 2010), no signifi-
cant spatial correlations can be found for any single WP.
Therefore, Table 3 lists only the spatial correlations for
the different METRAS-1 km simulations in comparison
with the UHIE dataset. All correlations are lower than
the correlation between UHIE and the statistically re-
combined UHI pattern (r = 0.74). This shows that more
than one simulation needs to be conducted to obtain an
UHI that is close to the observations. The highest corre-
lations (r = 0.7) can be found for the WP4M results.
Therefore, this simulation could be used for sensitiv-
ity studies regarding adaption measures, if only the UHI
pattern is of interest. The lowest value for the correlation
is found for WP4T (r = 0.37). Hence, it cannot be con-
cluded that WP4 generally produces a typical UHI pat-
tern. The correlation coefficients for other simulations
range from 0.47 to 0.63.

5.3 Future climate

Future changes in the statistical-dynamically down-
scaled average strong UHI pattern are determined
by calculating the statistical weights (Eq. (2.6) and
Eq. (2.7)) for both RCMs (CLM and REMO) for
different periods. For the present climate, the period
1971–2000 is chosen. For the future climate, the two pe-
riods 2036–2065 and 2070–2099 are used. The two re-
alizations of REMO and CLM projections are combined
as done by Hoffmann and Schlünzen (2013). This
accounts to some extent for the natural climate variabil-
ity. Afterwards, the difference between the present av-
erage strong UHI pattern and the future average strong
UHI pattern is calculated. Besides changes in the UHI
pattern, the number of strong UHI days Nstrong (Eq. 2.2)
might change as well. Hence, the annual Nstrong is calcu-
lated for present and future periods. The statistical sig-
nificance of these changes is determined using bootstrap

Table 4: Annual number of strong UHI days Nstrong (ΔTu−r ≥ 3 K)
in summer (JJA) for different RCM results and different periods.
The two realizations of REMO and CLM are combined. Results are
shown for non-corrected and bias-corrected projections of REMO
and CLM. Significant changes (α = 0.05) are indicated by (**).

period REMO CLM

without
bias-

correction

with
bias-

correction

without
bias-

correction

with
bias-

correction

1971–2000 16.3 22.2 10.2 24.6
2036–2065 16.9 22.8 11.4 26.8
2070–2099 17.3 26.8 15.4** 32.0**

re-sampling (10000 resamples). The applied method ac-
counts only for changes of the UHI due to changes in
the climatology. Changes of the UHI due to changing
urban morphology of Hamburg are not considered. For
these simulations with the mesoscale model using dif-
ferent surface cover maps would be required.

For the RCM data without bias correction, the
changes in the average strong UHI pattern for the fu-
ture period 2036–2065 are presented in Fig. 8. For both
REMO and CLM, the changes are marginal (Figs. 8a, b).
They show slight increases within the city. These
changes are, however, below 0.05 K. Even though the
pattern does not change; Nstrong slightly increases for
both models (Table 4). These changes are not signifi-
cant. Nstrong is underestimated by REMO and CLM for
the present climate without bias correction (ERA40 =
24.9 days). This is mostly due to biases in the vari-
ables used in the statistical model (Schoetter et al.,
2012), which reduce the statistically modelled UHI.
Hence, it is questionable if the statistical model, which
is determined from observations, can be directly ap-
plied to uncorrected RCM results. For that reason, the
bias-corrected RCM data (Section 3) are used to inves-
tigate the corresponding UHI changes. Figs. 8c, d show
changes in the UHI pattern for the bias-corrected RCM
data. REMO shows nearly no changes at all, while the
UHI magnitude derived from CLM data increases al-
most constantly over large parts of the city as well as
over the surrounding rural areas. With the bias correc-
tion REMO still underestimates Nstrong by 2.7 days for
the present climate while the CLM result is very close to
the value derived from the combination of ERA40 based
WPs and observation based statistical model results (Ta-
ble 4). For REMO, the absolute signal remains constant
with +0.7 days for 2036–2065. The signal for CLM in-
creases to +2.2 days. Nevertheless, both change signals
are not significant.

For 2070–2099, the changes for the uncorrected
REMO and CLM results are smaller than for the ear-
lier period (Figs. 9a, b). However, the number of strong
UHI days increases about +1 day for the REMO results
and up to +5.2 days for the CLM results. The latter in-
crease is statistically significant. The area of the largest
increases occurs over the river Elbe. This is due to in-
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Figure 8: Differences in the statistically-dynamically downscaled average strong UHI pattern (8 p.m. to 12 a.m. LST) in summer (JJA)
between the future period 2036–2065 and the present climate (1971–2000) using uncorrected (a) REMO and (b) CLM and bias-corrected
(c) REMO and (d) CLM data.

creased weighting of simulations where the UHI pattern
is strongly affected by water bodies (e.g. WP4M). The
increases in the surroundings of Hamburg indicate that
the changes can partly be attributed to non-urban related
features of some simulations, for example an east-west
temperature gradient over the whole domain.

Using the bias-corrected data, the changes are smaller
for REMO (Fig. 9c). For CLM results, large changes
in the UHI pattern (Fig. 9d) are found. In the western
parts of Hamburg, the UHI increases up to 0.13 K. The
bias correction also changes the signal of Nstrong from
+5.2 days to +7.2 days. After the bias correction, the
increase of Nstrong calculated based on REMO results
increases from +1 day to +4.6 days, which is still not
statistically significant.

6 Discussion

Since the presented downscaling method involves simu-
lations of real (past) weather situations, these mesoscale

model results can be directly evaluated with observed
data. For both resolutions, the temperatures are under-
estimated while the relative humidity is overestimated.
An influence of such biases on the UHI is possible and
should be investigated in model sensitivity studies. From
the 238 evaluation studies summarized by Schlünzen
et al. (2015) 25 % have a bias below −1.1 K; thus the
simulations conducted in the present study are on av-
erage well within the range of evaluation studies per-
formed by other mesoscale models at similar horizontal
resolution. The variation between the evaluation results
of the individual simulations is, however, high, such that
some simulations show results like the best evaluation
results summarized by Schlünzen et al. (2015). Fur-
thermore, the higher resolution improves the simulation
of the near-surface flow field, which can be expected due
to the better representation of the topography and sur-
face cover. The differences in temperature and humidity
between the two model setups might not only be due to
the different resolution, but also to the different surface
representation (Section 4.2). In addition to the number
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Figure 9: Differences in the statistically-dynamically downscaled average strong UHI pattern (8 p.m. to 12 a.m.) in summer (JJA) between
the future period 2070–2099 and the present climate (1971–2000) using uncorrected (a) REMO and (b) CLM, bias-corrected (c) REMO and
(d) CLM data.

of surface cover classes, the classes also differ in their
respective parameters (Table 1). For instance, the land-
use class “meadows” is split into four different classes
of grass (short dry, long dry, short wet, and long wet)
while none of them has the same parameter as “mead-
ows”. Urban areas are attributed to several typical urban
classes (e.g. high and low buildings, asphalt) but also
trees, bushes and grass are considered.

The simulated UHI intensity is lower than to be ex-
pected from the statistically modelled UHI. This incon-
sistency can be explained partially by the different def-
inition used to calculate ΔTu−r . The statistical model
is based on differences in the minimum temperature
(Section 2), while the temperature differences ΔTu−r
from the numerical simulations are calculated at a fixed
time. Another reason is that the numerically simulated
temperatures are average temperatures over an area of
1 × 1 km2 which is sealed by 70 % at a maximum. The
DWD station St. Pauli used for calculation of the “ob-
served” strong UHI has been located in an area with
rather high buildings with many sealed surfaces close

by, which might therefore lead to the rather strong ob-
served UHI. The other suburban sites in Hamburg show
much lower UHI values (Schlünzen et al., 2010). Also
the comparison of differences of simulated temperature
in 10 m above ground with observed differences of tem-
perature in 2 m above ground can lead to smaller UHI in-
tensities. Flagg (2010), who conducted simulations for
Detroit using the Weather Research and Forecast Model
(WRF), showed that the urban-rural temperature differ-
ences in model results are larger when using the 2 m val-
ues instead of values in the lowest model level.

As shown in Section 4, the relative humidity is over-
estimated in most of the simulations. This could also
lead to a reduction of the UHI because both variables
are inversely related. Additionally, the lack of a canopy
layer parameterization reduces the urban effect that ac-
counts among others for radiative trapping in street
canyons. METRAS simulations conducted for London
using the Building Effect Parameterisation (BEP, Mar-
tilli et al., 2002) showed an increase of at most 1 K
within urban areas compared to simulations without
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BEP (Grawe et al., 2012). In addition, the effect of an-
thropogenic heat release is disregarded in the present
study. Petrik et al. (2015) showed that for Hamburg,
the nocturnal urban temperatures increase locally by up
to 0.5 K when incorporating anthropogenic heat release.
This is a local maximum value, which will be smaller at
daytime (increased boundary layer height) and in sum-
mertime (reduced energy demand for heating). It addi-
tionally depends on the time of the day because the en-
ergy usage is usually reduced at night-time. The radia-
tive trapping effect and the anthropogenic heat might not
superimpose linearly, but including them would increase
the simulated UHI intensity. Future studies should in-
clude additional scenarios for the anthropogenic heat
emissions and study their impact on the UHI and in com-
bination with the climate change. Also the variability of
the 2 m temperature within a grid cell could be studied
and a more detailed consideration of building effects be
included. Information on buildings within Hamburg are
now available (Schoetter et al., 2013).

The analysis of the statistically recombined UHI pat-
tern shows that the maximum UHI intensity (∼1.2 K) is
located in the inner parts of the city, including harbour
areas, which agrees well with the UHIE. The UHI pat-
tern is largely affected by water surfaces. Hence, wa-
ter temperatures seem to be crucial when simulating the
local climate for Hamburg. At the moment river tem-
peratures are set using interpolated SST data. In fur-
ther studies measured river temperature data from the
Wassergütemessnetz (WGMN) could be used (Fock,
2014). Anthropogenic heat emissions should also be
considered in an additional scenario study, since water
temperatures in lakes and rivers are also affected by hu-
man activities, e.g. usage of river water for the cooling
of power plants. The SDD method also assumes that the
difference between water temperature and air tempera-
ture remains unchanged in the future climate. To ver-
ify this, a river model should be coupled with transient
RCM projections, which should also consider the men-
tioned anthropogenic effects.

Despite the above mentioned shortcomings the sim-
ulated pattern of Hamburg’s UHI is quite well repre-
sented when compared to the available observations.
This proves the usefulness of the SDD method to simu-
late the UHI. In addition, the representation of the urban
surfaces in METRAS is sufficient to study urban effects.

The employed observational data have some short-
comings, too. The DWD dataset has only a few urban
stations; most of them are not operated anymore. In the
next few years new long-term urban climate measure-
ments from the Hamburg Urban Soil Climate Obser-
vatory (HUSCO, Wiesner et al., 2014) will be avail-
able. This will substantially improve the understanding
of Hamburg’s UHI as well as help to improve the treat-
ment of urban areas in METRAS.

Nonetheless, even with only 13 3-day simulations the
SDD method is able to achieve a robust summer UHI
pattern. This is a reduction of ∼ 99 percent of the days
that need to be simulated (13× 3 days = 39 days instead

of 30 × 92 days = 2760 days). But it has to be kept
in mind that the pattern is just representative for strong
UHI days (∼25 % of summer days). This corresponds
to a reduction of about ∼ 94 %, which is still large.
The reduction of the computational effort due to the
SDD method is even higher when future changes are
investigated because no additional simulations need to
be conducted.

The future UHI is computed by applying the SDD
method to regional climate projections from different
RCMs. Thereby it is assumed that the morphology of the
city does not change in a future climate. Since this will
not be the case, a projection of the future surface cover
should be considered, resulting in additional scenarios.
Daneke (2013) developed a model for land-use changes
in the greater city of Hamburg. With the projected land-
use converted to the METRAS surface cover classes, the
UHI changes can be determined with consideration of
morphological changes (Boettcher et al., in review).

The UHI changes are determined for two 30-year pe-
riods. For the period 2036–2065, the changes in the UHI
pattern as well as changes in the number of strong UHI
days are not significant compared to 1971–2000 based
on the REMO and CLM projections. However, both
models show biases in the statistically modelled UHI for
the current climate due to biases in the RCM variables.
These biases are partially eliminated by the bias cor-
rection described in Schoetter et al. (2012). This bias
correction is applied for all values within each month.
However, it is not clear if the model biases are simi-
lar for different WPs. If this is not the case, the biases
would need to be corrected for each WP separately. The
change in the UHI pattern is only slightly influenced by
the bias correction. However, the number of strong UHI
days is increased by +1 day for CLM. The changes in the
signal can be expected since threshold based variables
are sensitive to a change in the statistical distribution.
For 2070–2099, the bias-corrected CLM results show
an increase in the western parts of Hamburg by up to
0.13 K. This corresponds to about 10 % of the simulated
maximum UHI intensity (1.2 K) and is in the order of
changes found by Hamdi et al. (2015) for Brussels and
Paris for the summer season. However, they find a de-
crease of the UHI magnitude instead of an increase. For
the uncorrected CLM results as well as for the REMO
results the changes are small. The results also indicate
that the pattern of the changes is affected by non-urban
effects of individual simulations such as large-scale tem-
perature gradients, probably due to the small number
of simulations (13). The increase in the UHI intensity
in CLM is caused by an increase of UHI values within
WP4 (large meridional pressure gradient and advection
of dry air masses) and an increase in the frequency of
WP4. Hoffmann and Schlünzen (2013) showed that
the frequency of WP4 increases especially at the end
of the century in the CLM simulations. This is not the
case for the uncorrected CLM results. The number of
strong UHI days in CLM increases significantly by up
to 5. This is mainly due to the reduction in the daily
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relative humidity projected by this RCM (not shown).
The increase of 3.6 days for REMO is not significant.
Nevertheless, together with the findings of Hoffmann
et al. (2012), who showed that the number of days with
an UHI larger than 4 K increase significantly, the results
point to occurrences of more strong UHI days in sum-
mer at the end of the 21st century.

7 Conclusions

A statistical-dynamical downscaling (SDD) method is
developed and applied to downscale Hamburg’s UHI. It
combines a WPC with a statistical model for the UHI
intensity to determine relevant weather situations, which
are simulated with the mesoscale numerical model ME-
TRAS forced with ECMWF data. The final horizontal
resolution of 1 km is achieved with a two-step nesting
with an intermediate simulation on a 4 km grid. The
1 km simulations are conducted with a much more de-
tailed surface cover classification that accounts for the
heterogeneity of surfaces within the city. The UHI pat-
tern is computed by a statistical recombination of the
simulation results for different weather situations.

The main advantages of this method with respect to
dynamical downscaling are the drastically reduced com-
putational effort (∼ 94 % for current climate) and the op-
portunity to evaluate not just one resulting UHI pattern
but also the dynamical simulations because past weather
situations are downscaled. The latter is also an advan-
tage over the SDD method of Früh et al. (2011a,b),
which simulated only idealized weather situations with-
out nesting. The evaluation showed that METRAS per-
formed well compared to other mesoscale modelling
studies for most of the investigated variables. The result-
ing UHI pattern for the current climate corresponds well
with the available observations, while the intensity is un-
derestimated possibly due to the resolution, which might
be still to coarse to correctly represent the heterogeneity
of urban areas, and due to missing urban related effects
in METRAS (i.e. anthropogenic heat release, radiative
trapping). The highest UHI intensity was simulated in
the densely build inner city of Hamburg and the harbour
areas. Increased temperatures along the Elbe river in-
dicate an important role of water bodies on night-time
temperatures in Hamburg.

Applying the method to SRES A1B projections from
the RCMs REMO and CLM does not give a coherent
change signal in the UHI pattern. CLM shows an inten-
sification of the averaged UHI in the western parts of the
city for the end of the 21st century, while REMO shows
no changes. However, the results show that there is a ten-
dency towards more strong UHI days especially towards
the end of the century. Consequently, climate adaptation
measures need to be developed that reduce the UHI in-
tensity to compensate some of the night-time tempera-
ture increases in Hamburg due to climate change.

In the present study the urban area structure of the
city did not change. Therefore, urban development sce-
narios should be considered (e.g. Boettcher et al.,

in review), which will increase the number of high-
resolution (1 km) simulations by a factor of two for each
development scenario.

The present study shows that the proposed SDD
method can help to investigate future changes in urban
climate with a limited amount of computation resources.
The small number of days that needs to be simulated
means that the simulations could be downscaled further
with high-resolution meso- or mircroscale models. In
addition, it can be applied as a tool to investigate cli-
mate adaptation measures as well as climate mitigation
measures (Boettcher et al., in review) for urban areas.
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