Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neurosecretion: What can we learn from chromaffin cells.

MPG-Autoren
/persons/resource/persons15570

Neher,  E.
Emeritus Group of Membrane Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2473116.pdf
(Verlagsversion), 342KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neher, E. (2018). Neurosecretion: What can we learn from chromaffin cells. Pflügers Archiv - European Journal of Physiology, 470(1), 7-11. doi:10.1007/s00424-017-2051-6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-D12F-2
Zusammenfassung
Many of the molecular players in the stimulus-secretion chain are similarly active in neurosecretion and catecholamine release. Therefore, studying chromaffin cells uncovered many details of the processes of docking, priming, and exocytosis of vesicles. However, morphological specializations at synapses, called active zones (AZs), confer extra speed of response and another layer of control to the fast release of vesicles by action potentials. Work at the Calyx of Held, a glutamatergic nerve terminal, has shown that in addition to such rapidly released vesicles, there is a pool of "Slow Vesicles," which are held to be perfectly release-competent, but lack a final step of tight interaction with the AZ. It is argued here that such "Slow Vesicles" have many properties in common with chromaffin granules. The added complexity in the AZ-dependent regulation of "Fast Vesicles" can lead to misinterpretation of data on neurosecretion. Therefore, the study of Slow Vesicles and of chromaffin granules may provide a clearer picture of the early steps in the highly regulated process of neurosecretion.