Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Accurate reconstruction of cell and particle tracks from 3D live imaging data.

MPG-Autoren
/persons/resource/persons208298

Liepe,  J.
Research Group of Quantitative and System Biology, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2472941.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)

2472941_Suppl.pdf
(Ergänzendes Material), 2MB

Zitation

Liepe, J., Sim, A., Weavers, H., Ward, L., Martin, P., & Stump, M. P. H. (2016). Accurate reconstruction of cell and particle tracks from 3D live imaging data. Cell Systems, 3(1), 102-107. doi:10.1016/j.cels.2016.06.002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-CFB1-5
Zusammenfassung
Spatial structures often constrain the 3D movement of cells or particles in vivo, yet this information is obscured when microscopy data are analyzed using standard approaches. Here, we present methods, called unwrapping and Riemannian manifold learning, for mapping particle-tracking data along unseen and irregularly curved surfaces onto appropriate 2D representations. This is conceptually similar to the problem of reconstructing accurate geography from conventional Mercator maps, but our methods do not require prior knowledge of the environments’ physical structure. Unwrapping and Riemannian manifold learning accurately recover the underlying 2D geometry from 3D imaging data without the need for fiducial marks. They outperform standard x-y projections, and unlike standard dimensionality reduction techniques, they also successfully detect both bias and persistence in cell migration modes. We demonstrate these features on simulated data and zebrafish and Drosophila in vivo immune cell trajectory datasets. Software packages that implement unwrapping and Riemannian manifold learning are provided.