English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Arctic stratosphere dynamical response to global warming

MPS-Authors
/persons/resource/persons37254

Manzini,  Elisa
Minerva Research Group Stratosphere and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

jcli-d-16-0781.1.pdf
(Publisher version), 4MB

Supplementary Material (public)

10.1175_jcli-d-16-0781.s1.docx
(Supplementary material), 18MB

Citation

Karpechko, A. Y., & Manzini, E. (2017). Arctic stratosphere dynamical response to global warming. Journal of Climate, 30, 7071-7086. doi:10.1175/JCLI-D-16-0781.1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-CF7A-1
Abstract
The role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming is investigated here by analyzing simulations performed with atmosphere-only models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) driven by prescribed sea surface temperatures (SSTs). Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however, until now, no satisfactory mechanism for such a response has been suggested. This study focuses on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analyzed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wavenumber 1, as diagnosed by the meridional eddy heat flux. Further, it is shown that the stratospheric warming and increased wave flux to the stratosphere are related to the strengthening of the zonal winds in subtropics and midlatitudes near the tropopause. Evidence presented in this paper corroborate climate model simulations of future stratospheric changes and suggest a dynamical warming of the Arctic polar vortex as the most likely response to global warming.