English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Recent advances in soil moisture estimation from remote sensing

MPS-Authors
/persons/resource/persons59571

Peng,  Jian
Terrestrial Remote Sensing / HOAPS, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37243

Loew,  Alexander
Terrestrial Remote Sensing / HOAPS, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

water-09-00530.pdf
(Publisher version), 184KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Peng, J., & Loew, A. (2017). Recent advances in soil moisture estimation from remote sensing. Water, 9: 530. doi:10.3390/w9070530.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-CBFC-E
Abstract
Monitoring soil moisture dynamics from local to global scales is essential for a wide range of applications. The field of remote sensing of soil moisture has expanded greatly and the first dedicated soil moisture satellite missions (SMOS, SMAP) were launched, and new missions, such as SENTINEL-1 provide long-term perspectives for land surface monitoring. This special issue aims to summarize the recent advances in soil moisture estimation from remote sensing, including recent advances in retrieval algorithms, validation, and applications of satellite-based soil moisture products. Contributions in this special issue exploit the estimation of soil moisture from both microwave remote sensing data and thermal infrared information. The validation of satellite soil moisture products can be very challenging, due to the different spatial scales of in situ measurements and satellite data. Some papers present validation studies to quantify soil moisture uncertainties. On the other hand, soil moisture downscaling schemes and new methods for soil moisture retrieval from GPS are also addressed by some contributions. Soil moisture data are used in fields like agriculture, hydrology, and climate sciences. Several studies explore the use of soil moisture data for hydrological application such as runoff prediction