Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Influence of Water on the Performance of Molybdenum Carbide Catalysts in Hydrodeoxygenation Reactions: A Combined Theoretical and Experimental Study

MPG-Autoren
/persons/resource/persons205510

Engelhardt,  Jan
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Engelhardt, J., Lyu, P., Nachtigall, P., Schüth, F., & García, Á. M. (2017). The Influence of Water on the Performance of Molybdenum Carbide Catalysts in Hydrodeoxygenation Reactions: A Combined Theoretical and Experimental Study. ChemCatChem, 9(11), 1985-1991. doi:10.1002/cctc.201700181.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-CADB-F
Zusammenfassung
Understanding the deactivation of transition-metal carbide catalysts during hydrodeoxygenation (HDO) reactions is of great importance for improving the production of the second generation fuels from biomass. Based on a combined experimental and theoretical study, we present a mechanistic model for the deactivation of molybdenum carbide catalysts during phenol HDO in the presence of water. At increased water pressure, water molecules preferentially bind to the surface, and active sites are no longer accessible for phenol. In line with first principle calculations, experiments reveal that this process is fully reversible because the reduction of the water partial pressure results in a threefold increase in conversion. The direct deoxygenation of phenol was calculated to be the most favorable pathway, which is governed by the structure of the phenol adsorption complex on the surface at high hydrogen coverage. This is consistent with the experimentally observed high benzene selectivity (85 ) for phenol HDO over MoCx/HCS (hollow carbon spheres) catalyst.