English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Identifying key structural features of IrOx water splitting catalysts

MPS-Authors
/persons/resource/persons49292

Willinger,  Elena
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion;

/persons/resource/persons85190

Massué,  Cyriac
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion;

/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Willinger, E., Massué, C., Schlögl, R., & Willinger, M. G. (2017). Identifying key structural features of IrOx water splitting catalysts. Journal of the American Chemical Society, 139(34), 12093-12101. doi:10.1021/jacs.7b07079.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-C775-F
Abstract
Hydrogen production by electrocatalytic water splitting will play a key role in the realization of a sustainable energy supply. Owing to their relatively high stability and activity, iridium (hydr)oxides have been identified as most promising catalysts for the oxidation of water. Comprehensive spectroscopic and theoretical studies on the basis of Rutile IrO2 have provided insight about the electronic structure of the active X-ray amorphous phase. However, due to the absence of long-range order and missing information about the local arrangement of structural units, our present understanding of the active phase is very unsatisfying. In this work, using a combination of real-space atomic scale imaging with atomic pair distribution function analysis and local measurements of the electronic structure, we identify key structural motifs that are associated with high water splitting activity. Comparison of two X-ray amorphous phases with distinctively different electrocatalytic performance reveals that high activity is linked to the ratio between corner- and edgesharing IrO6 octahedra. We show that the active and stable phase consists of single unit cell sized Hollandite-like structural domains that are cross-linked through undercoordinated oxygen/iridium atoms. In the less active phase, the presence of the Rutile phase structural motif results in a faster structural collapse and deactivation. The presented results provide insight in the structure-activity relation and promote a rational synthesis of X-ray amorphous IrOx hydroxides that contain a favorable arrangement of structural units for improved performance in catalytic water splitting.