Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

chainCleaner improves genome alignment specificity and sensitivity

MPG-Autoren
/persons/resource/persons193004

Suarez,  Hernando
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons217282

Langer,  Bjoern E.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons217284

Ladde,  Pradnya
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184581

Hiller,  Michael
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Suarez, H., Langer, B. E., Ladde, P., & Hiller, M. (2017). chainCleaner improves genome alignment specificity and sensitivity. Bioinformatics, 33(11), 1596-1603. doi:10.1093/bioinformatics/btx024.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-C6CA-C
Zusammenfassung
Motivation: Accurate alignments between entire genomes are crucial for comparative genomics. However, computing sensitive and accurate genome alignments is a challenging problem, complicated by genomic rearrangements. Results: Here we present a fast approach, called chainCleaner, that improves the specificity in genome alignments by accurately detecting and removing local alignments that obscure the evolutionary history of genomic rearrangements. Systematic tests on alignments between the human and other vertebrate genomes show that chainCleaner (i) improves the alignment of numerous orthologous genes, (ii) exposes alignments between exons of orthologous genes that were masked before by alignments to pseudogenes, and (iii) recovers hundreds of kilobases in local alignments that otherwise would fall below a minimum score threshold. Our approach has broad applicability to improve the sensitivity and specificity of genome alignments.