RegulatorTrail: a web service for the identification of key transcriptional regulators

Tim Kehl1,*, Lara Schneider1, Florian Schmidt1,2,3, Daniel Stöckel1, Nico Gerstner1, Christina Backes1, Eckart Meese1,4, Andreas Keller1, Marcel H. Schulz1,2,3 and Hans-Peter Lenhof1

1Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany,
2Cluster of Excellence Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarland University, Saarbrücken, Germany, 3Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany and 4Human Genetics, Saarland University, 66421 Homburg, Germany

Received February 10, 2017; Revised April 07, 2017; Editorial Decision April 12, 2017; Accepted April 20, 2017

ABSTRACT

Transcriptional regulators such as transcription factors and chromatin modifiers play a central role in most biological processes. Alterations in their activities have been observed in many diseases, e.g. cancer. Hence, it is of utmost importance to evaluate and assess the effects of transcriptional regulators on natural and pathogenic processes. Here, we present RegulatorTrail, a web service that provides rich functionality for the identification and prioritization of key transcriptional regulators that have a strong impact on, e.g. pathological processes. RegulatorTrail offers eight methods that use regulator binding information in combination with transcriptomic or epigenomic data to infer the most influential regulators. Our web service not only provides an intuitive web interface, but also a well-documented RESTful API that allows for a straightforward integration into third-party workflows. The presented case studies highlight the capabilities of our web service and demonstrate its potential for the identification of influential regulators: we successfully identified regulators that might explain the increased malignancy in metastatic melanoma compared to primary tumors, as well as important regulators in macrophages. RegulatorTrail is freely accessible at: https://regulatortrail.bioinf.uni-sb.de/.

INTRODUCTION

Transcriptional regulators like transcription factors (TFs), coregulators and chromatin modifiers are proteins that control the expression of genes by promoting or inhibiting their transcription and that are involved in the regulation of most biological processes and signaling pathways (1). Mutations in transcriptional regulators or regulatory regions can lead to alterations of transcriptional programs (2). Hence, such mutations can cause diseases (2,3). For instance, mutations in several hepatocyte nuclear factors (HNFs) (4) and in the insulin promoting factor PDX1 (5) are associated with diabetes. Many transcriptional regulators have also been described in the context of tumor progression and metastasis (6), e.g. several members of the NF-κB family (7–9). Many regulators are even described as (proto-)oncogenes or tumor suppressor genes (10). The most prominent example is the tumor suppressor gene TP53, for which alterations in a variety of cancer types have been described (11). Their capability to control the transcription of a large number of genes makes transcriptional regulators interesting candidates as putative drug targets in cancer therapy (12–14).

Due to their inherent importance, it is crucial to identify transcriptional regulators that might explain expression changes between two groups of samples, e.g. disease versus control. In the following, we present a non-exhaustive list of algorithms that have been proposed for this purpose. We start our discussion with methods that use a predefined collection of regulator–target interactions (RTIs). Here, a pair (regulator; target gene) is defined as an RTI, if a binding of the regulator to a regulatory region (promotor, enhancer, etc.) of the target gene has been experimentally determined. A first group of approaches was designed to find individual regulators whose target genes have a significant overlap with a list of differentially expressed genes (15,16). A second group of approaches, discussed in this section, identifies important regulators based on gene expression data. For example, the ‘regulatory impact factors’ RIF1 and RIF2 (17) measure the degree of differential co-expression between a regulator and all its target genes. A further approach that requires gene expression data is the so-called Correlation Set Analysis (18), a method that unveils essential regulators in disease populations by calculating the
mean correlation of all target pairs. We recently developed an enrichment-based method called REGGAE that prioritizes regulators based on correlation coefficients from gene expression data (Kehl et al., in submission). A graph-based method for the identification of key regulators in a regulatory network has been developed by Gonçalves et al. (19). A t-test-based approach, called wPGS-A, that utilizes the probability of regulation in replicated ChIP-Seq experiments was presented by Kawakami et al. (20). Poos et al. published a machine learning approach, called MIPRIP (21), that predicts the most influential regulators for a single target gene. Gonçalves et al. presented Regulatory Snapshots, a web server for the identification of important regulatory modules (22) using time series gene expression data.

Another group of methods is based on genome-wide TF binding predictions. Exclusively sequence-based prediction methods, which screen the genome using position weight matrices, usually generate many false positive predictions. Recent studies verified that the number of false positive predictions can be substantially reduced by combining epigenetics data with sequence-based TF binding predictions (23,24). Several methods incorporating epigenetics data have been proposed, e.g. CENTIPEDE (23), PIQ (25), MILLIE (26), BinDNase (27), HINT-BC (28) or TEPIC (29). These predictions can be used in downstream applications, e.g. the PASTAA web service calculates TF binding affinities based on sequence specificity and applies the hypergeometric test to infer co-regulated target genes (30). TF binding predictions can also be used as features to build interpretable, predictive models of gene expression (29,31–34). An overview of the essential features of all methods discussed above is provided in Supplementary Table S1.

Here, we present RegulatorTrail, a new web service that provides rich functionality for the identification of key transcriptional regulators. In contrast to existing web servers that are specifically tailored to a single application scenario, we designed RegulatorTrail as a general framework offering eight distinct methods to identify key transcriptional regulators. Moreover, we ensured that RegulatorTrail offers at least one method from the different methodological classes sketched above and hence provides solutions for four specific application scenarios. Besides the wide range of algorithms, RegulatorTrail also provides comprehensive collections of RTIs and position-specific energy matrices (PSEMs) extracted from several databases (cf. ‘Resources and supported file formats’ section). In order to build interpretable, predictive models of gene expression, regulators and targets to prioritize the considered transcriptional regulators.

WORKFLOW

RegulatorTrail provides a variety of methods for the identification of important transcriptional regulators that can be applied to four distinct application scenarios. An overview of the different workflows is presented in Figure 1A. In each scenario, different input data is required for the computation of the most influential regulators (cf. ‘Resources and supported file formats’ section). The different approaches utilize our comprehensive collections of RTIs and PSEMs. In all scenarios, the output is a prioritized (sorted) list of transcriptional regulators or regulated target genes respectively that can be visualized in the web browser or downloaded in a variety of standard file formats, including CSV, JSON, Excel and PDF. Additionally, the resulting lists can be further analyzed with the enrichment network analysis functionality of GeneTrail2 (35) (cf. Figure 1B).

Scenario 1: in the first scenario, a user can upload a list of differentially expressed genes, e.g. genes that are differentially expressed between two groups of samples. Then the user can choose a collection of RTIs from our web server. Based on the gene list and the selected RTIs, RegulatorTrail identifies transcriptional regulators, whose set of target genes have a significant overlap with the uploaded gene list. For this purpose, three statistical tests are offered: a binomial test as described by Yang et al. (16), a hypergeometric test as presented by Essaghir et al. (15) and the Fisher’s exact test. For P-value adjustment, RegulatorTrail offers eight methods (cf. Supplementary Table S3), e.g. the false discovery rate (FDR)-adjustment method presented by Benjamini and Yekutieli (39). Finally, RegulatorTrail outputs a list of regulators sorted with respect to the adjusted P-values. For gene lists of size 250, the average runtime for the hypergeometric test and the Fisher’s exact test is 25 s and for the binomial test 4 min. Essaghir et al. considered such a scenario to find potential biomarkers common to multiple cancer types (40).

Scenario 2: in the second scenario, the user can upload a matrix that contains normalized gene expression values, where the samples belong to two groups of interest, e.g. disease and control. In a first step, expression differences between the two groups can be calculated. To this end, we provide a variety of methods. Among them standard measures like fold change, z-score and signal-to-noise ratio, as well as dependent and independent versions of widely used statistical tests like t-test and Wilcoxon rank-sum test. For count data, we additionally integrated the DESeq2 (41), edgeR (42) and RUVSeq (43) R-packages. In a second step, the user selects lists of up- or downregulated genes. The respective lists can then be used to identify regulators with over-represented target gene sets as described in the first scenario. For the second scenario, RegulatorTrail provides three further approaches that utilize expression correlations between regulators and targets to prioritize the considered regulators: RIF1, RIF2 (17) and REGGAE. Besides the sorted regulator lists, these methods additionally provide informa-
Figure 1. General overview of the RegulatorTrail workflow. S1–S4 represent four different application scenarios. In each scenario, different types of input files are required to identify influential regulators. The resulting regulator list can then be further investigated using the functionality of GeneTrail2 (downstream analysis). *Network analysis can only be applied in Scenarios 1 and 2.

Scenario 1: on whether the regulator has an activating or repressing effect. For a gene expression matrix with around 13,000 protein coding genes, 38 samples per group and a filtered gene list of size 250, the average runtime of this scenario is around 10 s for the regulatory impact factors and ∼3 min for a REGGAE analysis. Yao et al. considered such a scenario to identify genes associated with renal cell carcinoma (44).

Scenario 3: in the third scenario, the user can upload a BED file containing candidate regions for TF binding, which can be derived from open-chromatin data, e.g., DNase-hypersensitive sites (DHS) and TF-footprints, as well as from histone modification ChIP-seq data, e.g., H3K4me3 peaks. From the provided set of candidate regions, RegulatorTrail extracts those that overlap with windows of user-defined size that are centered at the most 5' transcriptional start site of all genes. Using the TEPIC framework (29), gene-TF binding scores are computed for all genes and a species-specific set of distinct TFs using an exponential decay formulation (45). The resulting gene-TF scores are provided as a tab-separated matrix that can either be used in a downstream enrichment analysis or to build a predictive model of gene expression (cf. Scenario 4). For genome-wide analysis of TF binding affinities, the average runtime is around 8 min using the entire collection of PSEM. A similar scenario has already been considered in (46).

Scenario 4: in addition to the BED file required in Scenario 3, also gene expression data must be uploaded to be able to perform an INVOKE (identification of key regulators) analysis. INVOKE follows a two-step approach. First, gene-TF binding scores are computed as described in the third scenario. Second, these scores are used as features in a linear regression model with either lasso, ridge or elastic net penalty to predict gene expression. Training and evaluating the model leads to three different outputs: model performance is assessed by calculating Pearson correlation, Spearman correlation and the mean-squared error (MSE) between predicted and measured gene expression on test data. Furthermore, we report a list of features with non-zero regression coefficients. These features were selected during model training, thus the corresponding TFs are likely to play an essential role in transcriptional regulation of the analyzed sample. In addition, a bar plot showing the top features, ranked according to their regression coefficients, is provided. Using lasso regularization, the expected runtime of this scenario is around 4 min. If additionally, the performance of the model should be calculated, the average runtime increases to ∼7 min. This scenario has already been applied in (29). Similar approaches have also been pursued in (31–34).

RESOURCES AND SUPPORTED FILE FORMATS

Currently, RegulatorTrail enables users to analyze regulatory interactions for five different organisms: Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster and Caenorhabditis elegans. Our web service accepts various input file formats through which the user can provide gene

RESOURCES AND SUPPORTED FILE FORMATS

Currently, RegulatorTrail enables users to analyze regulatory interactions for five different organisms: *Homo sapiens*, *Mus musculus*, *Rattus norvegicus*, *Drosophila melanogaster* and *Caenorhabditis elegans*. Our web service accepts various input file formats through which the user can provide gene
lists, gene expression data or genomic regions. Gene lists or
gene expression data must be provided as tab-separated text
files, where each line contains a single gene followed by asso-
ciated gene expression measurements. Additionally, the
integrated GSE file parser can be used to download microar-
ray experiments from the NCBI Gene Expression Omnibus
(GEO) (36). In both cases, RegulatorTrail automatically de-
tects and normalizes the used identifiers based on mapping
information from UniProt (47) and NCBI (48). Genomic re-
gions must be provided in standard BED format.

The different algorithms offered by RegulatorTrail rely
on third-party resources that contain information on TF
binding motifs or interactions between regulators and asso-
ciated target genes.

All approaches offered for Scenario 1 and 2 require inform-
ination on RTIs. To this end, we have built a comprehensive
collection of RTIs based on seven databases: CheEA (49),
ChIP-Atlas (chip-atlas.org), ChipBase (50), ENCODE (51),
JASPAR (52), SigTransLink (53) and TRANSFAC (54). How-
ever, the included databases provide different levels of inform-
ation on regulators and their putative target genes: (i) pre-
defined RTIs extracted from e.g. literature, (ii) binding sites
of regulators extracted from e.g. ChIP-Seq experiments and
(iii) RTIs determined by assigning regulator binding sites to
neighborhood target genes based on their distances to the tran-
scription start site (TSS) of the genes. More precisely, a regu-
lator is assigned to a gene if the binding site is in an interval
around the TSS. The different databases provide different
RT assignments based on symmetric or asymmetric inter-
vals around the TSS: [−1 kb, +1 kb], [−5 kb, +5 kb], [−10
kb, +10 kb], [−10 kb, +1 kb]. For consistency reasons, we
processed the available information on binding sites for all
databases such that all four proposed interval assignments
can be selected by the user. Users can also select which RTI
databases should be used for their analysis and they can even
upload their own set of RTIs.

In Scenarios 3 and 4, PSEMs that are derived from posi-
tion count matrices (PCMs) are used. We downloaded the
PCMs from several databases: TRANSFAC (54), HOCO-
MOCO (55), JASPAR (52) and the Keliss lab ENCODE
Motif database (56). To exclude PCMs of low quality, we
calculate the information content (IC) of each PCM and re-
move all matrices from our collection that have an IC value
above a threshold. If the databases contain multiple PCMs
for the same TF, only the most informative PCM is con-
sidered. In case that a TF has a known secondary binding
motif, we also keep the alternative PCM in our collection.

In Scenarios 3 and 4, PSEMs that are derived from posi-
tion count matrices (PCMs) are used. We downloaded the
PCMs from several databases: TRANSFAC (54), HOCO-
MOCO (55), JASPAR (52) and the Keliss lab ENCODE
Motif database (56). To exclude PCMs of low quality, we
calculate the information content (IC) of each PCM and re-
move all matrices from our collection that have an IC value
above a threshold. If the databases contain multiple PCMs
for the same TF, only the most informative PCM is con-
sidered. In case that a TF has a known secondary binding
motif, we also keep the alternative PCM in our collection.

Finally, we have converted all PCMs to PSEMs according
to a mismatch energy formulation introduced by Berg and
von Hippel (57).

For all scenarios, a reference genome and gene annota-
tions are required, which were downloaded from Ensembl
(58), ENCODE (59) and UCSC (60).

For all databases, we have implemented update routines
that will regularly be used to create new database versions.
Provenance data including retrieval dates of all databases
as well as detailed descriptions of all processing steps are
provided on the RegulatorTrail website.

SOFTWARE ARCHITECTURE AND IMPLEMENTA-
TION

RegulatorTrail is based on the modular architecture of the
GeneTrail2 web service (35). This architecture can be repre-
sented by a layered hierarchy with distinct functional com-
ponents as shown in Figure 2. The first component of the
layer is the web interface of RegulatorTrail that was
implemented using the Thymeleaf template engine and the
Bootstrap 3 web framework. This web interface interacts
with the underlying web server via a JAX-RS based REST-
ful API, which provides interfaces to start an analysis or
to query respective results. This API also allows users to in-
corporate RegulatorTrail into existing third-party pipelines.
Additionally, we provide Python 2.7, Python 3 and Julia
bindings that can directly be used to script our web service.
The actual processing tasks are performed using the TEPIC
framework (29) and the GeneTrail2 (35) C++ library, which
we extended with algorithms for regulator effect analysis.

CASE STUDIES

Due to space constraints, we focused on two case studies il-
ustrating the more elaborate application scenarios 2, 3 and 4
(cf. ‘Workflow’ section). In the first case study, we anal-
yzed gene expression data of melanoma patients to identify
regulators that might be responsible for the increased ma-
lignancy of cases with metastatic melanoma. In the second
case study, we performed an integrative analysis of open-
chromatin regions and gene expression data to find key reg-
lulators of macrophages.

Comparison of metastatic and non-metastatic melanoma

Melanoma is one of the most severe types of skin cancer. Es-
especially cases with metastatic melanoma have a poor prog-
nosis with an average survival time of around 1 year (61).

We analyzed a microarray dataset provided by Riker et al.
(37) (GSE7553) to find transcriptional regulators that have a significant impact on genes that are upregulated in
metastatic compared to non-metastatic melanoma samples.
First, we used RegulatorTrail’s integrated GEO file parser to download and process the corresponding GSE file. In a second step, we selected metastatic and primary melanoma samples as case group and control group respectively. A shrinkage t-test (62) was used to compute expression differences between the two groups and to select upregulated genes. Finally, we performed a REGGAE analysis to identify important regulators. The parameters of the REGGAE analysis and corresponding results are provided in Supplementary Tables S4 and S5. The top 15 transcriptional regulators provided by REAGGE can be found in Table 1. Of these 15 regulators, 13 have already been described in the context of melanoma (e.g. ZBTB7A (63), MITF (64) and ATF2 (65,66)) and twelve are known to be involved in metastasis or tumor progression in melanoma (e.g. GATA3 (67)) or other cancer types (e.g. CEBPA (68)). Moreover, our analysis revealed a set of eleven regulators that show decreased activity in metastatic melanoma compared to primary tumors and among them four known tumor suppressor genes. In particular, downregulation of ZBTB7A or TP63 has already been associated with poor prognosis of melanoma patients. ZBTB7A is known to promote metastasis in melanoma (63) and TP63 is associated with resistance to therapeutic agents (69). Additionally, we identified six regulators that have an increased activity in patients with metastatic tumors and among them two that have already been described as oncogenes: MITF and ATF2. The former is known to be amplified in malignant melanoma (64) and the latter is associated with the progression of the disease and even investigated as potential drug target for the therapy of melanoma (65,66).

Inferring key transcriptional regulators of macrophages

Macrophages are cells with diverse functions. They have phagocytic activity, play an essential role in the innate immune system as well as in the adaptive immune system (70). Thus, understanding the regulatory mechanisms in macrophages is of general interest.

We analyzed DHS (S001S745.ERX616976) and gene expression data (S001S712) of macrophages extracted from venous blood (S001S7) in the scope of the BLUEPRINT epigenomics project (38). We uploaded the BED file containing the DHS regions as well as corresponding gene expression values to RegulatorTrail and selected GRCh38 as the reference genome. Next, we selected a window of 50,000 bp around the 5\'-TSS of genes to compute gene-TF binding scores. Using the INVOKE component of RegulatorTrail, we have trained a linear regression model with elastic net penalty and the following default parameters: a 6-fold outer cross-validation, a 6-fold inner cross-validation and an alpha step size of 0.1. In order to judge the quality of the learned model, RegulatorTrail computes three different performance measures on test data, comparing predicted and measured gene expression across the outer folds. The model achieved a Pearson correlation of 0.616, a Spearman correlation of 0.666 and an MSE of 0.623.

In total, 13 TFs were selected with an absolute regression coefficient ≥0.025 and are shown in the bar plot in Figure 3. We found evidence that these 13 TFs are related to gene regulation in macrophages. Al Sadoun et al. have recently shown that the top ranked regulator, HOXA3, promotes macrophage maturation (71). Another factor, HLTF, is known to be targeted by the HIV-1 protein Vpr in T-cells and macrophages. As a consequence, HLTF is degraded, which negatively affects DNA repair mechanisms in infected cells (72). ETS2 is known to regulate macrophages during inflammation and to be involved in the regulation of tumor associated macrophages (73). The Kruppel Like Factor 4 (KLF4) is a zinc finger protein that can induce macrophage differentiation (74). Additionally, KLF4 was identified to regulate macrophage polarization (75). A list of all 13 TFs and references to literature describing the role of those TFs in macrophages are provided in Supplementary Table S7.

DISCUSSION AND CONCLUSION

Transcriptional regulators like TFs, coregulators and chromatin modifiers have a strong influence on biological processes and signaling pathways. Alterations in their activities can cause diseases like diabetes or cancer (2). Hence, understanding the role of regulators in natural and pathological processes may be the key for the detection of novel biomarkers and may even lead to the discovery of new drug targets. Therefore, the identification of transcriptional regulators that heavily influence biological processes is of utmost importance. Over the last few years, a variety of methods

<table>
<thead>
<tr>
<th>Regulators</th>
<th>Adjusted p-value</th>
<th>Melanoma</th>
<th>Metastasis or tumor</th>
<th>Tumor suppressor gene</th>
<th>Oncogene</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOSL2</td>
<td>4.88e-158</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEBPA</td>
<td>7.70e-148</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>ZBTB7A</td>
<td>1.76e-141</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>SMAD1</td>
<td>1.35e-140</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATA3</td>
<td>3.13e-136</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2F6</td>
<td>3.92e-126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITF</td>
<td>2.23e-105</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>FOXP1</td>
<td>4.92e-104</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TFAP2C</td>
<td>1.60e-96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RXRA</td>
<td>7.42e-94</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBX3</td>
<td>1.94e-89</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>3.03e-83</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>ATF2</td>
<td>4.00e-78</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>HEY1</td>
<td>1.37e-77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP63</td>
<td>2.62e-75</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

The colors of the names in the first column indicate whether the average correlation coefficient between a regulator and its targets is positive or negative (correlated or anti-correlated). The second column shows corresponding P-values and the remaining columns indicate if associations to the corresponding property can be found in literature (cf. Supplementary Table S6).
have been proposed that try to tackle this problem. Most of them are provided as standalone applications, but some web servers are also available: (i) TFactS (14) uses the hypergeometric test to detect regulators whose targets have a significant overlap with an uploaded gene list. (ii) PASTAA (28) computes binding affinities of TFs based on PEMs and uses the hypergeometric test to identify coregulated target genes. (iii) Regulatory Snapshots (22) unveils regulatory modules in expression time series data.

Here, we present RegulatorTrail, the first web service that provides a comprehensive selection of methods for the identification of important regulators. In contrast to other approaches that have been tailored to a specific application scenario, we designed RegulatorTrail as a framework for the identification of key transcriptional regulators. It already offers eight methods for this task, and due to its modular design, it can be easily extended with further functionality. The web service can be used in four distinct application scenarios to either analyze gene lists, gene expression data or epigenetic data. Additionally, our web server is tightly connected to its sister project GeneTrail2 that can be used for downstream analysis to perform enrichment or network analysis in order to find shared mechanisms or mutually regulated signaling pathways.

In the near future, we will extend RegulatorTrail by incorporating additional methods for assessing the relevance of transcriptional regulators. Moreover, we will integrate more sophisticated methods for the assignment of regulators to their target genes. Although recent studies, see e.g. (76), confirmed that the TF binding to regulatory regions strongly influences the expression of the ‘nearest’ genes, the assignment of regulators to their target genes based only on distance information is, of course, a simplified approach that can lead to many false positive and negative RTIs. In the future, chromosome conformation capturing techniques like Hi-C may enable a cell state specific (dynamic) assignment of RTIs, see e.g. (77).

The presented case studies demonstrate the capabilities of RegulatorTrail. We were able to detect meaningful regulators that might explain the increased malignancy of metastatic melanoma compared to primary tumors as well as important regulators in macrophages. The rich functionality of our web server combined with the intuitive web interface and the well-documented RESTful API make RegulatorTrail a valuable tool for the elucidation of complex regulatory mechanisms and set it apart from other approaches.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Saarland University; Deutsche Forschungsgemeinschaft Scalable Visual Analytics project [SPP 1335, LE952/5–1]. Funding for open access charge: Saarland University. Conflict of interest statement. None declared.

REFERENCES

