English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A tale of 2 signals: signal mimicry between aposematic species enhances predator avoidance learning

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rowland, H. M., Hoogesteger, T., Ruxton, G. D., Speed, M. P., & Mappes, J. (2010). A tale of 2 signals: signal mimicry between aposematic species enhances predator avoidance learning. Behavioral Ecology, 21(4), 851-860. doi:10.1093/beheco/arq071.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-C864-9
Abstract
Mullerian mimicry, where 2 or more unrelated aposematic species resemble one another, is predicted to reduce the per capita mortality of co-mimics by allowing them to share the cost of educating naive predators about their unpalatability. However, the specific assumptions and predictions of Muller's theory of shared resemblance have been previously unsupported; some authors have suggested that the benefits of signal similarity are undetectable or at best very small. We demonstrate clearly and unambiguously that mimicry between 2 defended forms can provide substantial protection from uneducated predators in the manner proposed originally by Muller. By utilizing prey signals that were designed and demonstrated, to be equally visible, learned with equal facility, and discriminated by our predators, we assessed the effect of the presence of signal mimicry on the survival of a Model species in a "novel world" experiment, with wild-caught great tits (Parus major) as predators. We found that the net effect of mimicry was mutualistic, with co-mimics showing increased survivorship through shared predator learning. Visually distinct prey showed a mortality benefit from coexistence even without signal mimicry as a result of a density-dependent dilution effect. Perfect mimicry provided an added benefit of enhanced predator avoidance learning, and our results suggest that the benefits of shared warning signals may be even stronger than Muller originally proposed.