Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Human memory strength is predicted by theta-frequency phase-locking of single neurons

MPG-Autoren
/persons/resource/persons208176

Rutishauser,  U.
Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons208206

Schuman,  E. M.
Synaptic Plasticity Department, Max Planck Institute for Brain Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rutishauser, U., Ross, I. B., Mamelak, A. N., & Schuman, E. M. (2010). Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature, 464(7290), 903-907.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-2165-E
Zusammenfassung
Learning from novel experiences is a major task of the central nervous system. In mammals, the medial temporal lobe is crucial for this rapid form of learning(1). The modification of synapses and neuronal circuits through plasticity is thought to underlie memory formation(2). The induction of synaptic plasticity is favoured by coordinated action-potential timing across populations of neurons(3). Such coordinated activity of neural populations can give rise to oscillations of different frequencies, recorded in local field potentials. Brain oscillations in the theta frequency range (3-8 Hz) are often associated with the favourable induction of synaptic plasticity as well as behavioural memory(4). Here we report the activity of single neurons recorded together with the local field potential in humans engaged in a learning task. We show that successful memory formation in humans is predicted by a tight coordination of spike timing with the local theta oscillation. More stereotyped spiking predicts better memory, as indicated by higher retrieval confidence reported by subjects. These findings provide a link between the known modulation of theta oscillations by many memory-modulating behaviours and circuit mechanisms of plasticity.