Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Jahn-Teller distortion driven magnetic polarons in magnetite

MPG-Autoren
/persons/resource/persons126881

Tjeng,  L. H.
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huang, H. Y., Chen, Z. Y., Wang, R.-P., de Groot, F. M. F., Wu, W. B., Okamoto, J., et al. (2017). Jahn-Teller distortion driven magnetic polarons in magnetite. Nature Communications, 8: 15929, pp. 1-6. doi:10.1038/ncomms15929.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-AEAF-6
Zusammenfassung
The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin-orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons.