Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Sensitivities of Amazonian clouds to aerosols and updraft speed

MPG-Autoren
/persons/resource/persons100833

Andreae,  M. O.
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100858

Borrmann,  S.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons145446

Mahnke,  Christoph
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140247

Molleker,  S.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203102

Pöhlker,  M. L.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cecchini, M. A., Machado, L. A. T., Andreae, M. O., Martin, S. T., Albrecht, R. I., Artaxo, P., et al. (2017). Sensitivities of Amazonian clouds to aerosols and updraft speed. Atmospheric Chemistry and Physics Discussions, 17.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-AAEB-2
Zusammenfassung
The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in-situ aircraft measurements over the Amazon basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the highly biomass-burning-polluted southern Amazon. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds, while updraft speeds have a modulating role in the latter and in total condensed water. The cloud microphysical properties were found to be highly variable with altitude above cloud base, which we used as a proxy for cloud evolution since it is a measure of the time droplets were subject to cloud processing. We show that DSD shape is crucial in understanding cloud sensitivities. The aerosol effect on DSD shape was found to vary with altitude, which can help models to better constrain the indirect aerosol effect on climate.