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Sanborn and Chater [1] propose an inter-
esting theory of cognitive and brain func-
tion based on Bayesian sampling instead
of asymptotic Bayesian inference. Their
proposal unifies many current observa-
tions and models and, despite focusing
primarily on cognitive phenomena, their
work provides a springboard for unifying
several proposed theories of brain func-
tion. It has the potential to serve as a
bridge between three influential overarch-
ing current theories of cognitive and brain
function: Bayesian models, Friston’s [2—4]
theory of cortical responses based on the
free-energy principle, and attractor-basin
dynamics [5,6]. Specifically, their pro-
posal suggests a high-level perspective
on Friston’s theory, which in turn pro-
poses a sampling procedure including
appropriate handling of autocorrelation
as well as a plausible neurobiological
implementation. In turn, these two theo-
ries together link into attractor-basin
dynamics at the level of networks (via
Friston) as well as at the level of behaviour
(via the relationship between the modes
of prior and posterior distributions, as dis-
cussed by Sanborn and Chater). We will
argue here that, by linking Sanborn and
Chater’'s approach to neurobiological
models based on the free-energy princi-
ple on the one hand, and attractor-basin
dynamics on the other, the scope of their
proposal can be broadened considerably.
Moreover, a unified perspective along
these lines provides an elegant solution

to several of Sanborn and Chater’s out-
standing questions relating to the neural
implementation of sampling.

Sanborn and Chater briefly touch upon
the connection of their work to Friston’s
hierarchical model proposal, but only link
it somewhat generally to the broad
computational approach he has pro-
posed for the representation and compu-
tation of these models in neural wetware
[7]. Friston’s other work, however, also
describes and models the relationship
between behaviour and the sampling pro-
cedure necessary for active Bayesian
inference [8]. This is compatible with the
phenomena that Sanborn and Chater
describe as ‘warm-up’ tuning. Although
Sanborn and Chater perhaps intentionally
formulated their proposal in an implemen-
tation-agnostic manner, Friston’s
approach fills in the gaps regarding the
neural implementation of sampling in an
illuminating way that has been used to
model a wide range of phenomena
[3,4,8,9]. In particular, Friston’s model
provides large-scale suggestions — at
the level of groups and networks of neu-
rons — of how sampling is implemented (i.
e., hierarchical structure [2,7] and active
sampling [2]), and suggests that a simpli-
fied or indirect probability distribution is
used, in other words free energy as a
proxy for model evidence [8]. In this
framework, autocorrelation is minimised
via the active sampling procedure, but is
also effectively handled by the iterative
model updates — autocorrelated samples
provide little additional information and
thus small error signals. They therefore
contribute in decreasing amounts to over-
all model convergence. This is related to
the performance of particle (and the
related Kalman) filters, which Sanborn
and Chater also mention.

While Friston’s model has been proposed
as an overarching theory describing the
brain as a whole, attractor basins have
been proposed as an explanation of
emergent classifier behaviour in dynam-
ical systems such as neural networks (e.
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g., [56,6]). Attractor basins are steady
states in a dynamical system that are
associated with stable, high-firing rates
in neural networks, whether computa-
tional or biological. In many ways this
approach complements Friston’s princi-
ples-first approach with an emergent,
empirical observation, and indeed attrac-
tors can be seen as local optima (and
hence stable states) in the free-energy
landscape [10]. Sanborn and Chater’s
approach provides exactly this connec-
tion because the posterior modes in their
sampling procedure are essentially
attractor basins — areas of high probability
density where a posterior belief tends to
be drawn and to which estimates (beliefs)
tend to converge (see their Figure 1). This
observation goes beyond Sanborn and
Chater’s connection to the mechanisms
of neural networks such as the Boltzmann
machine and deep belief networks, and
underscores the profound relationship
between these two theories. The Bayes-
ian combination of prior beliefs (including
modes/pre-existing attractor basins) and
likelihood (model based on current evi-
dence), leading to a new set of modes
when the evidence is strong enough but
subject to bias from finite sampling, also
provides a convenient explanation for the
emergence of new attractor basins, in
other words perceptual categories and
decisions, over time. Because attractor
networks provide a neurobiologically
plausible way of modelling neural pro-
cesses related to decision making and
classification across a range of scales
from perception [11,12] to more complex
cognitive domains such as language
processing [13], this isomorphism — both
in sampling behaviour (as noted by San-
born and Chater) and in large-scale
behaviour via sampling modes and
attractor basins - is particularly
interesting.

Sanborn and Chater thus provide a
compelling normative account of cogni-
tion based on Bayesian sampling that
acquires a (neuronal) process theory
under the free-energy  principle.
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Specifically, formulating Bayesian infer-
ence as gradient ascent (i.e., dynamical
optimisation) on Bayesian model evi-
dence(i.e., free energy) yields a plausible
account of neuronal dynamics. These
dynamics can either be regarded as a
description of the average behaviour of a
sampling-based scheme (e.g., particle
filtering) or, equivalently, of the behaviour
of a variational Bayesian filter (e.g., Kal-
man filter) of the type assumed by the
predictive coding approach. This refor-
mulation as a dynamical process theory
enables a more intuitive expression of
processing in terms of attractors, thus
tying into the literature on dynamical
systems and attractor basins as a
description of mnemonic processes
and decision-making. Indeed, the very
existence of attractor states underwrites
the free energy principle per se — and
has some interesting connections with
other normative approaches, such as
value and reinforcement learning [10].

In brief, Sanborn and Chater’s proposal
provides deep connections to leading
theories of neural organisation and their
emergent dynamical and behavioural
properties. Given its direct application
to cognitive phenomena, their proposal
thus provides a potential missing link in
a ‘trinity’ of models of the brain and
behaviour from the lowest levels of orga-
nisation (small-scale networks) all the way
to its highest levels (cognition and
behaviour).
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The Sampling Brain

Adam N. Sanborn’* and
Nick Chater®

Alday, Schlesewsky, and Bornkessel-
Schlesewsky [1] provide a stimulating
commentary on the issues discussed in
our paper [2], highlighting important con-
nections between sampling, Bayesian
inference, neural networks, free energy,
and basins of attraction. We trace here
some relevant history of computational
theories of the brain.

Consider the Hopfield network [3], a ‘neural
network’ with symmetrical connections
between binary neural ‘units’. Hopfield
showed how such a network could learn:
patterns were ‘imposed’ on the network,
and connections modified by local Heb-
bian learning. Remarkably, the network
could fill in’ patterns from fragments,
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providing a form of ‘content-addressable
memory’. Hopfield also showed that the
‘free-running’ of such a network minimized
an ‘energy function’ across the entire net-
work, measuring the coherence of the pat-
tern with respect to the connection weights
(roughly, coherence involves positive
weights between units with the same value;
negative weights between units with differ-
ent values). The behavior of the network as
it fallsinto a stable pattern can be viewed as
falling into an attractor basin — exactly as
the dynamics of many physical systems
can be modeled as descending an energy
landscape.

The Boltzmann machine [4], mentioned
by Alday et al. [1], extends the Hopfield
model in a variety of ways. Crucially, it can
learn from patterns presented on subsets
of ‘visible’ units, employing freely varying
‘hidden’ units which allow more-complex
relationships between the visible units to
be expressed. As before, the binary
states of the ‘neural’ units in the Boltz-
mann machine can be assigned an
energy function; but in the Boltzmann
machine the units are stochastic. Thus,
the network ‘settles’ not into a fixed pat-
tern but rather into a probability distribu-
tion across patterns. Each ‘update’ of a
new unit corresponds to drawing a new
sample from the probability distribution
using the technique of Gibbs sampling
[5], first developed in computer vision,
and now widely used in statistics and
machine learning. Moreover, the Boltz-
mann machine can be trained to model
a probability distribution presented over
the visible units via Hebbian learning
during a ‘wake’ phase, and anti-Hebbian
learning during a ‘sleep’ phase, where
no input is presented and the system
runs freely.

This exciting constellation of ideas illus-
trates that a system of interconnected
neuron-like units can learn to sample from
a complex probability distribution from
experience; and, indeed, sample from
conditional distributions where some of
the visible units are ‘clamped’ -
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