Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned

MPG-Autoren
/persons/resource/persons207139

Knogler,  Laura D.
Max Planck Research Group: Sensorimotor Control / Portugues, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons207142

Markov,  Daniil A.
Max Planck Research Group: Sensorimotor Control / Portugues, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons207147

Dragomir,  Elena I.
Max Planck Research Group: Sensorimotor Control / Portugues, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons207149

Štih,  Vilim
Max Planck Research Group: Sensorimotor Control / Portugues, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons145287

Portugues,  Ruben
Max Planck Research Group: Sensorimotor Control / Portugues, MPI of Neurobiology, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knogler, L. D., Markov, D. A., Dragomir, E. I., Štih, V., & Portugues, R. (2017). Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned. Current Biology, 27(9), 1288-1302. doi:10.1016/j.cub.2017.03.029.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-A59A-F
Zusammenfassung
A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hind-brain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations.