Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

High-precision measurement of the proton’s atomic mass

MPG-Autoren
/persons/resource/persons207033

Heiße,  Fabian
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Thesis_Heiße_Fabian.pdf
(beliebiger Volltext), 12MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heiße, F. (2019). High-precision measurement of the proton’s atomic mass. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-A0E2-D
Zusammenfassung
In the course of this thesis major parts of the new Penning trap
experiment LIONTRAP (Light-Ion Trap) have been built up, the whole apparatus
has been commissioned and characterized. This enabled the first two
measurement campaigns, including the measurements of the proton’s and oxygen’s
atomic masses.
The LIONTRAP experiment is dedicated to high-precision mass measurements
of light ions. The measurement principle is based on the cyclotron frequency
comparison of a carbon ion to the one of a light ion to determine its atomic
mass. Therefore, the most harmonic cylindrical Penning trap described in the
literature so far has been realized.
In the first measurement campaign, the proton’s atomic mass has been determined
with an unrivaled relative precision of 3 × 10−11. This result is a factor
of three more precise compared to the literature value at this time, revealing
a more than three standard deviation to it. Additionally, the oxygen’s atomic
mass has been measured with the second best precision, in agreement with the
literature value. During the second measurement campaign the largest systematic
effect of the proton mass measurement, the image charge shift, has been
analyzed. The achieved relative uncertainty of 5% is the second most precise
measurement reported in literature so far. Moreover, the measured result is in
very good accordance with the result predicted by dedicated simulations.