English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations

MPS-Authors
/persons/resource/persons73310

Castellano,  Sergi
Selenium and Genome Annotation, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Martin, M. D., Jay, F., Castellano, S., & Slatkin, M. (2017). Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations. Molecular Ecology, 26(16), 4145-4157. doi:10.1111/mec.14188.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-9111-D
Abstract
We develop and evaluate methods for inferring relatedness among individuals from low-coverage DNA sequences of their genomes, with particular emphasis on sequences obtained from fossil remains. We suggest the major factors complicating the determination of relatedness among ancient individuals are sequencing depth, the number of overlapping sites, the sequencing error rate and the presence of contamination from present-day genetic sources. We develop a theoretical model that facilitates the exploration of these factors and their relative effects, via measurement of pairwise genetic distances, without calling genotypes, and determine the power to infer relatedness under various scenarios of varying sequencing depth, present-day contamination and sequencing error. The model is validated by a simulation study as well as the analysis of aligned sequences from present-day human genomes. We then apply the method to the recently published genome sequences of ancient Europeans, developing a statistical treatment to determine confidence in assigned relatedness that is, in some cases, more precise than previously reported. As the majority of ancient specimens are from animals, this method would be applicable to investigate kinship in nonhuman remains. The developed software grups (Genetic Relatedness Using Pedigree Simulations) is implemented in Python and freely available.