
CLIVAR Exchanges No. 72, June 2017      14Past Global Changes Magazine, Volume 25, No. 1

Dirk Notz
Max Planck Institute for Meteorology, Hamburg, Germany

Introduction
The large-scale loss of Arctic sea ice in recent decades is 
one of the most prominent indicators of the ongoing global 
climate change. This derives from three main reasons. 
First, climate change is amplified in the Arctic (“Arctic 
amplification”, e.g. Pithan et al. (2013)), so consequences 
of changes in the global-mean climate are more readily 
observed at high latitudes compared to middle and 
lower latitudes. Second, while many observables change 
gradually with global mean climate, Arctic sea ice is 
among those observables that might eventually cross a 
binary threshold from “existing” to “non-existing”, which 
amplifies the perception of the underlying gradual trend. 
And third, as a consequence, changes in “Arctic sea ice 
coverage” are easier to grasp and communicate to a 
general public than changes in more abstract metrics 
such as “global mean temperature”.

The observed changes in Arctic sea ice are not only a clear 
local indicator of large-scale climate change; the ice loss 
also has a number of sometimes far-reaching worldwide 
consequences. These include physical phenomena such 
as the possible impact on mid-latitude weather system 
or the disruption of the oceanic uptake of CO2, but 
also societal consequences such as the opening of new 
shipping routes or the necessary changes in the lifelihood 
of the Arctic indigenous population.

The importance of sea ice loss both as an indicator and 
as an active player in the ongoing climate change has 
motivated some intense research into understanding the 
temporal evolution of sea ice on time scales from seasons to 
decades. In this contribution, I use a combined analysis of 
the observational record and of climate model simulations 
to explain and summarize some of these findings.

Seasonal variability: The importance of atmospheric 
chaos 
Recent years have seen an increase in research activities 
aimed at forecasting the evolution of Arctic sea ice on time 
scales of a few months. There is good reason to believe 
that such seasonal-scale forecasts should be possible, 
with model studies emphasizing in particular the rather 
long memory of the sea ice state imprinted in the sea ice 
thickness fields (e.g., Blanchard-Wrigglesworth et al., 
2011), and the long memory of the oceanic heat content

that determines the regional evolution of Arctic sea ice 
(e.g., Bushuk et al., 2015).

The underlying research is in part driven by very 
practical applications, such as ship routing, but will also 
increase our fundamental understanding of air–ice–sea 
interactions at high latitudes. Related activities are for 
example coordinated by the Polar Prediction Project 
with its flagship Year of Polar Prediction 2017-2019 
(www.polarprediction.net, under the auspices of WMO 
World Weather Research Programm WWRP), by the 
Polar Climate Predictability Initiative (www.climate-
cryosphere.org/wcrp/pcpi, under the auspices of the 
WMO World Climate Research Program WCRP), and by 
the Sea ice Prediction Network with its Sea ice Outlook 
activity (www.arcus.org/sipn). 

In this latter activity, various research groups try to 
forecast the minimum Arctic sea ice area coverage in 
September based on the observed state of the sea ice cover 
from May onwards. The groups use a variety of methods, 
ranging from heuristic methods to seasonal prediction 
systems based on coupled climate models. An analysis of 
the forecast quality of the various methods has shown a 
mixed picture, with no single method giving significantly 
better results than any other (Stroeve et al., 2014). 

This finding is possibly surprising in that idealised 
studies with seasonal prediction systems usually result 
in significant prediction skill of many months up to a few 
years in advance (Blanchard-Wrigglesworth et al., 2016). 
In this framework referred to as “perfect model”, a single 
model simulation is taken as the “observed truth”, while 
additional model simulations with slightly perturbed 
initial conditions are used to estimate whether this 
“truth” can be forecast. 

The striking difference in the forecast quality of such 
idealised studies compared to those trying to forecast 
the real world might be explicable by three main factors. 
First, the forecast skill strongly depends on a proper 
knowledge of the initial state of the system. As shown 
by Bunzel et al. (2016), the incomplete knowledge of 
May sea ice concentration as reflected by the differences 
between different satellite data sets can cause differences
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Figure 1: (a) Evolution of modeled and observed Arctic sea ice area in May and July (1979–2016). (b) Modeled Arctic sea ice area 
in July as a function of observed Arctic sea ice area in May of the same year. (c) Observed Arctic sea ice area in July as a function 
of observed Arctic sea ice area in May of the same year. Observations for all panels are based on the Arctic sea ice index (Fetterer 
et al., 2002, updated 2016). Model simulations for all panels are based on the first ensemble member of the CMIP5 simulations of 
MPI-ESM-LR (Notz et al., 2013).

in forecast mean September Arctic temperature of 
several degrees, and in forecast September Arctic sea 
ice area of 2 million km2. The incomplete knowledge of 
initial conditions of the sea ice cover arises because the 
microwave signature that is usually used to assess ice 
concentration reacts sensitively to snow coverage and 
melt-pond formation on the ice, for example. Different 
algorithms compensate these uncertainties in different 
ways, causing substantial differences of the observed 
sea ice area. Because of positive feedbacks such as 
the ice-albedo feedback, these differences in initial 
conditions are substantially amplified during summer 
and contribute to the much lower forecast quality of real-
world applications compared to perfect model studies. 
Incomplete knowledge of the state of the underlying 
ocean certainly also contributes to these uncertainties.

Second, the forecast skill might be negatively affected by 
the initial shock and drift in the forecast runs in a real-

world application. Both are absent in a perfect-model 
study, as its forecasts are usually started from a model 
state that is perfectly consistent with model physics. In 
contrast, the initial state for any simulation starting from 
a model state based on observations will usually be more 
or less inconsistent with model physics, possibly causing 
substantial drift that can quickly compensate for any 
added value from the assimilation of observations.

A third factor that might cause the systematically better 
forecast skill in idealised model studies relates to possible 
model errors in the simulation of the persistence of the 
Arctic sea ice cover. Take, for example, the relationship 
between Arctic sea ice area in May and Arctic sea ice 
area in July during the observational period 1979–2016 
(Fig. 1a). The time series of these two months are highly 
correlated because of their underlying trend, both in the 
observations and in the model simulations.
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However, the detrended time series are only significantly 
correlated in the model simulations (Fig. 1b), with the 
Pearson rank coefficient of the correlations indicating 
a chance of far less than 1 % that these time series are 
uncorrelated. In contrast, chances are above 30 % that 
there is no significant correlation between the detrended 
observed time series of sea ice area in May and the 
detrended observed time series of sea ice area in July 
(Fig. 1c). 

This suggests that at least an idealised study based on 
the particular model employed here (MPI-ESM-LR) will 
result in an unrealistically large potential forecast skill 
of seasonal predictions. We are currently examining 
whether this finding also holds for other models, and are 
in particular trying to investigate the underlying reasons 
for this different behaviour in the model compared to 
reality. 

Annual variability: The importance of negative 
feedbacks
In addition to seasonal forecasts on time scales of a few 
months, also forecasts on time scales of a few years 
have made some headlines over the past decade. These 
headlines were usually related to claims that the Arctic 
would lose its remaining summer sea ice within just a few 
years. The underlying reasoning of such claims was often 
related to a discussion of a possible ’tipping point’ that is 
related to the ice-albedo feedback. Given the substantial 
loss of Arctic sea ice in the past few years, the ocean 
could potentially absorb enough heat to rapidly melt the 
remainder of the sea ice cover.

However, our current understanding of the Arctic climate 
system strongly suggests that this reasoning is unrealistic. 
A first indication for this finding derived from model 
experiments in which all Arctic sea ice was synthetically 
removed from the Arctic Ocean at the onset of summer, 
thus maximising the possible ice-albedo feedback 
(Tietsche et al., 2011). Despite such maximised feedback, 
the ice cover recovered in these experiments within 
just a few years. This is because on annual time scales, 
negative feedbacks dominate the evolution of the Arctic 
sea ice cover. Three negative feedbacks are particularly 
important: First, the open ocean very effectively releases 
its heat to the atmosphere during winter, causing a rapid 
loss of much of the heat that was accumulated in the ice-
free water during summer. Second, the thin ice that forms 
during winter can grow much more rapidly than ice that 
survived the summer, because heat can more effectively 
be transported from the ocean to the atmosphere when 
the ice cover is thin (Bitz and Roe, 2004). Third, as ice 
forms later in the season, it will carry a thinner insolating 
snow cover as any snow fall occurring before ice 
formation simply falls into the open ocean (Notz, 2009).
 
The effectiveness of these negative feedbacks on an annual 
time scale is not only apparent in our model simulations; 

Figure 2: (a) Evolution of modeled and observed Arctic sea 
ice area in September (1850–2016). (b) Evolution of ten-year 
linear trends of Arctic sea ice area, plotted at the end point 
of the ten year averaging period. (c) Evolution of thirty-year 
linear trends of Arctic sea ice area, plotted at the end point 
of the thirty year averaging period. (d) Evolution of modeled 
and observed Arctic sea ice area in September (1850–2100) 
as a function of cumulative anthropogenic CO2 emissions. 
Observations for all panels are based on the Arctic sea ice 
index (Fetterer et al., 2002, updated 2016). Model simulations 
for all panels are based on the 100 member ensemble of MPI-
ESM-LR.
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the observed time series of Arctic summer sea ice also 
carries a clear signature of such mechanisms. A year with 
a strong drop in ice coverage during September is usually 
followed by an increase in September ice coverage 
in the following year. More formally, the time series 
shows significant negative autocorrelation (Notz and 
Marotzke, 2012). If indeed the ice albedo feedback was as 
effective on annual time scales as implied by statements 
supporting the entire loss of Arctic summer sea ice 
within this decade, one would certainly expect that any 
year with a strong drop in ice coverage would be followed 
by a year with yet another drop. This is found neither in 
the observational record, nor in model simulation. This 
underpins the dominance of negative feedbacks, which 
stabilize the Arctic ice cover and prevent a possible 
“tipping point”.  

Decadal variability: The importance of internal 
variability
Internal climate variability not only governs a substantial 
part of the sea ice evolution on seasonal-to-interannual 
time scales as discussed above, but also affects the longer 
term trends of sea ice (Swart et al., 2015; Notz, 2015). To 
exemplify this, large ensembles of simulations of coupled 
Earth System Models are particularly helpful (Swart et 
al., 2015). At the Max-Planck-Institute for Meteorolgy, 
we have recently finished a 100 member large ensemble 
of simulations with our Earth System Model MPI-ESM-
LR for the historical period, and for two possible future 
emission scenarios, RCP2.6 and RCP4.5. In comparing 
the simulated Area sea ice area during September with 
the observational record 1979–2016, we find that 
the observed sea ice area is at the upper edge of the 
ensemble spread during the earlier years of the record, 
and approaches the mean of the ensemble in the more 
recent past (Fig. 2a).

Ten-year long trends within the observational record 
have consistenly been negative with values ranging from 
a mean loss of 23 000 km2 per year during the period 
1990–1999 to a mean loss of 180 000 km2 during the 
period 2003–2012 (black line in Fig. 2b). This latter 
period includes the two record minima that have been 
observed in 2007 and 2012. For the most recent period 
2007-2016, the average ice loss has been around 
50 000 km2 per year. All these numbers are well within 
the range simulated by individual ensemble members 
of MPI-ESM-LR, which show over ten year-long 
periods a sea ice evolution ranging from a mean loss of 
around 200 000 km2 per year to a mean gain of around 
100 000 km2 per year (shaded range in Fig. 2b). In 
particular, it is noteworthy that the mean ten-year long 
trends for the first 20 years of the satellite record and for 
the most recent past are very close to the mean trend of 
the 100 member ensemble, including a slowdown of the 
ice loss during the 1990s and an accelaration during the 
early 2000s. This agreement during substantial periods 
of the record suggests that the rather sudden drop in 

observed sea ice area that occured in the year 2007 has 
been an extreme event compatible with internal climate 
variability and therefore cannot directly be compared 
to the ensemble mean across several models or to the 
ensemble mean across multiple simulations with one 
model. If this characterisation of this sea ice loss as an 
extreme event was correct, any realistic climate model 
should on average simulate a slower ice loss than has 
been observed (see also Notz (2015) for a detailed 
discussion).

Regarding the future evolution of sea ice, the model 
simulations with MPI-ESM-LR suggest a similar range of 
possible ten year trends than over the past few decades. 
Hence, in extreme cases and providing the hypothesis 
that the level of internal climate variability simulated is 
correct, the sea ice cover might in the future potentially 
once again lose ice as fast as during the first decade of 
this century, or, in contrast, gain an average of 100 000 
km2 per year for a decade despite the ongoing global 
warming (see also Swart et al., 2015).

In order to more confidently predict the near-term 
evolution of Arctic sea ice, the underlying reasons for 
internal variability must be understood better. A number 
of recent studies point in particular to the impact of 
oceanic heat transport into the Arctic for driving low-
frequency variability of the ice cover, including a possible 
contribution to the recent acceleration of sea ice loss 
(e.g., Årthun et al., 2012). These studies emphasize 
that a scenario with a much slower sea ice loss for the 
next decade is plausible if oceanic heat transport were 
to weaken (Zhang, 2015; Yeager et al., 2015). Such 
weakening of the oceanic heat transport would not 
only affect the sea ice cover itself, but also its future 
predictability on seasonal time scales (Germe et al., 
2014). This then directly links the challenge of decadal 
forecasting of sea ice to that of its seasonal forecasting as 
described in the previous section.

Long-term changes: The importance of the external 
forcing
On longer time scales, internal variabililty also remains 
a substantial contributor to the evolution of Arctic sea 
ice area. The 100 member simulations suggest a possible 
spread in observed September sea ice area of around 2 
million km2 for any given year (Fig. 2a). In terms of trends, 
even long-term trends over 30 years show substantial 
variability (Fig. 2c). For example, the model suggests that 
over the past 30 years, sea ice area in the Arctic could 
have remained roughly constant or could have decreased 
roughly as quickly as observed. This large spread in 30-
year long trends again suggests that using these trends 
as metrics for the purpose of model evaluation can be 
misleading (Notz, 2015), in particular if the observed 
evolution of Arctic sea ice corresponds to a possible 
extreme event.
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Despite the large impact of internal variability, the 
dominant role of external forcing in the observed 
evolution of Arctic sea ice is clear (Notz and Marotzke, 
2012). The weight of the external forcing becomes 
particularly apparent if one examines the average 
evolution of Arctic sea ice coverage in the 100 member 
ensemble as a function of cumulative anthropogenic CO2

 

emissions (Fig. 2d). The long-term evolution of the sea 
ice cover directly follows the cumulative emissions. In 
particular, there is no clear difference in mean sea ice 
coverage between RCP 2.6 and RCP 4.5 for any given 
cumulative CO2 emission. 

We have recently been able to explain this relationship, 
which is largely based on the fact that the position of 
the outer edge of the sea ice cover is determined by the 
net local energy balance (Notz and Stroeve, 2016). Any 
rise in atmospheric CO2 concentration increases the 
incoming longwave radiation at the ice edge, causing the 
latter to move northward to a region with less incoming 
shortwave radiation. For geometric reasons, these 
combined processes lead to a roughly linear relationship 
between Arctic sea ice loss and anthropogenic CO2 
emissions in the obervational record and in all CMIP5 
model simulations. In the obervations, about 3 m2 of sea 
ice are lost per ton of CO2 emissions, while the models on 
average only simulate an ice loss of 1.7 m2 per ton of CO2 
emissions. 

The fact that the relationship between cumulative CO2 
emissions and Arctic sea ice area is roughly linear strongly 
suggests a dominating role of the CO2 emissions for the 
evolution of sea ice area. However, other external drivers 
are also apparent, in particular in the mean across all 
simulations of our 100-member ensemble. Most striking 
are temporary increases in Arctic sea ice area following 
large volcanic eruptions during the historical period, most 
recently in 1991 after the Pinatubo eruption, in 1982 after 
the eruption of El Chichon and in 1963 after the eruption 
of Mount Agung (compare also Zanchettin et al., 2014). 
Because of the large internal variability and the relatively 
short-lived response, these eruptions are impossible 
to identify in the temporal evolution of individual 
simulations nor the observational record, but they 
apparently have contributed to a synthetic improvement 
of CMIP5 sea ice simulations relative to CMIP3 sea 
ice simulations (Rosenblum and Eisenman, 2016).

Conclusions
This short overview presents some recent work on the 
variability and long-term evolution of Arctic sea ice area. 
For space constraints, the focus was only on September 
sea ice coverage as this is the month with the strongest 
observed trends. The discussion can be summarized as 
follows: 
• On seasonal time scales, atmospheric internal 

variability and its imprint on sea ice renders skillful 
predictions of September sea ice coverage more than 

         two months in advance inherently difficult. 
• On annual time scales, negative feedbacks stabilize 

the sea ice cover. There is no “tipping point” beyond 
which the loss of the remaining summer sea ice 
becomes unstoppable 

• On decadal time scales, internal climate variability 
can cause a substantial acceleration or temporary 
recovery of the sea ice cover that renders the 
evaluation of individual model simulations based on 
their short-term trends impossible. 

• On longer time scales, internal variability causes a 
substantial spread in possible 30-year long trends 
supporting for the production of large model 
ensembles. Nevertheless, the impact of anthropognic 
forcing on the long-term sea ice evolution is clear, 
with an average loss of 3 m2 of September sea ice 
cover per metric ton of anthropogenic CO2 emission. 

References
Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. 
B. Ingvaldsen, 2012: Quantifying the influence of Atlantic 
heat on Barents Sea ice variability and retreat, J. Clim., 25, 
4736–4743, doi:10.1175/JCLI-D-11-00466.1.

Bitz, C., and G. Roe, 2004: A mechanism for the high rate 
of sea ice thinning in the Arctic Ocean. J. Clim., 17 (18), 
3623–3632.

Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, 
and E. DeWeaver, 2011: Persistence and inherent 
predictability of Arctic sea ice in a GCM ensemble and 
observations, J. Climate, 24, 231–250. 

Blanchard-Wrigglesworth, E., and Coauthors, 2016: 
Multi-model seasonal forecast of Arctic sea ice: forecast 
uncertainty at pan-Arctic and regional scales. Clim. Dyn., 
1–12, 10.1007/s00382-016-3388-9.

Bushuk, M., D. Giannakis, and A. J. Majda, 2015: Arctic 
sea ice reemergence: The role of large-scale oceanic and 
atmospheric variability, J. Climate, 28, 5477–5509. 

Bunzel, F., D. Notz, J. Baehr, W. A. Müller, and K. 
Fröhlich, 2016: Seasonal climate forecasts significantly 
affected by observational uncertainty of Arctic sea ice 
concentration. Geophys. Res. Lett., 43 (2), 2015GL066 
928, 10.1002/2015GL066928.

Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002, 
updated 2016: Sea ice index. Digital media, National 
Snow and Ice Data Center, Boulder, Colorado USA.

Germe, A., M. Chevallier, D. S. y Mélia, E. Sanchez Gomez, 
and C. Cassou,2014, Interannual predictability of Arctic 
sea ice in a global climate model: Regional contrasts and 
temporal evolution, Clim. Dyn., 43(9-10), 2519–2538.

Notz, D., 2009: The future of ice sheets and sea ice: 



19      CLIVAR Exchanges No. 72, June 2017 Past Global Changes Magazine, Volume 25, No. 1

Between reversible retreat and unstoppable loss. Proc. 
Nat. Ac. Sci., 106 (49), 20 590–20 595, doi:10.1073/
pnas.0902356 106.

Notz, D., 2015: How well must climate models agree with 
observations?  Phil. Trans. R. Soc. A, 373 (2052), 20140 
164, 10.1098/rsta.2014.0164.

Notz, D., A. Haumann, H. Haak, J. Jungclaus, and J. 
Marotzke, 2013: Arctic sea ice evolution as modeled by 
MPI-ESM. J. Adv. Model. Earth Syst., 5, 173–194, 10.1002/
jame.20016.

Notz, D., and J. Marotzke, 2012: Observations reveal 
external driver for arctic sea ice retreat. Geophys. Res. 
Lett., 39 (8), L051 094, 10.1029/2012GL051094.

Notz, D., and J. Stroeve, 2016: Observed Arctic sea ice loss 
directly follows anthropogenic CO2 emission. Science, 
aag2345, 10.1126/science.aag2345.

Pithan, F., B. Medeiros, and T. Mauritsen, 2013: Mixed-
phase clouds cause climate model biases in Arctic 
wintertime temperature inversions. Clim Dyn, 43 (1-2), 
289–303, 10.1007/s00382-013-1964-9.

Rosenblum, E., and I. Eisenman, 2016: Faster Arctic Sea 
ice Retreat in CMIP5 than in CMIP3 due to Volcanoes. J. 
Climate, 29 (24), 9179–9188, 10.1175/JCLI-D-16-0391.1.

Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-
Wrigglesworth, 2014: Predicting September sea ice: 
Ensemble skill of the SEARCH Sea ice Outlook 2008-
2013. Geophys. Res. Lett., 41 (7), 2014GL059 388, 
10.1002/2014GL059388.

Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 
2015: Influence of internal variability on Arctic sea ice 
trends. Nature Clim. Change, 5 (2), 86–89, 10.1038/
nclimate2483.

Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2011: 
Recovery mechanisms of Arctic summer sea ice. Geophys. 
Res. Lett., 38 (L02707), 10.1029/2010GL045698.

Yeager, S. G., A. R. Karspeck, and G. Danabasoglu, 
2015: Predicted slowdown in the rate of 
Atlantic sea ice loss, Geophys. Res. Lett., 42, 
doi:10.1002/2015GL065364. 

Zanchettin, D., O. Bothe, C. Timmreck, J. Bader, A. 
Beitsch, H. F. Graf, D. Notz, and J. H. Jungclaus, 2014: 
Inter-hemispheric asymmetry in the sea ice response to 
volcanic forcing simulated by MPI-ESM (COSMOS-Mill). 
Earth Syst. Dynam., 5, 223–242.

Zhang, R., 2015: Mechanisms for low-frequency variability 
of summer Arctic sea ice extent, Proc. Natl. Acad. Sci. 

U.S.A., 112, 4570–4575, doi:10.1073/pnas.1422296112.


