Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The role of anthropogenic warming in 2015 central european heat waves

MPG-Autoren
/persons/resource/persons127729

Sippel,  Sebastian
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons195348

Flach,  Milan
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BGC2658.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)

BGC2658s1.pdf
(Ergänzendes Material), 5MB

Zitation

Sippel, S., Otto, F. E. L., Flach, M., & van OLdenborgh, G. J. (2016). The role of anthropogenic warming in 2015 central european heat waves. Bulletin of the American Meteorological Society, 97(12), S51-S56. doi:10.1175/BAMS-D-16-0150.1.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-836A-7
Zusammenfassung
Summer 2015 in Europe. The summer 2015 in Europe was highly unusual, as persistent heat and dryness prevailed in large parts of the continent. In central and eastern Europe, a combination of record-low seasonal rainfall (Orth et al. 2016) and record-high monthly July/August temperatures were observed over an area stretching from France to western Russia (Supplemental Fig. S11.1). The anomalous temperatures were caused by a sequence of four intense heat waves that struck the region from the end of June to early September (e.g., Fig. 11.1a). It is precisely the few-day heat that causes problems with human health, especially when combined with high humidity (McGregor et al. 2010). We analyze seasonal maxima of 3-day mean temperature (Tair3d, max) and seasonal maxima of 3-day daily maximum wet bulb temperature (WBTX3d, max), a measure of human thermal discomfort that combines temperature and humidity and is a proxy for heat stress on the human body (Fischer and Knutti 2013; Sherwood and Huber 2010). The series of heat waves began with a strongly meandering jet stream, that is summertime “omegablocking” (Dole et al. 2011), and the advection of very warm subtropical air into central and western Europe (Supplemental Fig. S11.1). Later in the season, the jet stream was displaced to the north, so that stable high-pressure systems could prevail over central and eastern Europe bringing heat there. The first heat wave in early July was hence most pronounced in western parts of the continent, while south-central and east-central Europe experienced the highest temperatures in the subsequent heat waves later in the season (Fig. 11.1b). Anomalies in the hottest 3-day mean temperature reached up to +6°C relative to climatology (Figs. 11.1c,d), and temperature records were broken, including nationwide records (Kitzingen, Germany: 40.3°C; https://weather.com/news/climate/news/europe- heat-wave-poland-germany-czech-august-2015), various station records stretching from France to the Balkan countries and southern Sweden (www .meteofrance.fr/actualites/26913226-episode -de-tres-fortes-chaleurs-en-france), nighttime temperatures (Vienna, Austria: 26.9°C), record 3-day mean temperatures across central Europe (Fig. 11.1e), and inland water temperatures (e.g., Lake Constance). Europe experienced the hottest August ever recorded (NOAA 2016), and the entire summer season ranked third after the unusual summers of persistent heat in 2003 and 2010 with hotspots in France and western Russia, respectively (Barriopedro et al. 2011; Stott et al. 2004). This extraordinary sequence of events raises the question to what extent human-induced climate change played a role in short-term heat waves beyond natural climate variability. A potential anthropogenic contribution to the summer 2015 heat events had already been investigated in near–real time (www.climatecentral.org /europe-2015-heatwave-climate-change), and in the present paper we build upon and substantiate the previous analysis. We investigate two diagnostics (Tair3d, max and WBTX3d, max) at four locations in longterm station-based observational records and in a large ensemble of consistently bias-corrected regional climate model simulations