Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Excitation of triplet excitons in aromatic single crystals by guest-host energy transfer

MPG-Autoren
/persons/resource/persons128263

Zimmermann,  Herbert
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons205764

Stehlik,  D.
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93336

Hausser,  Karl H.
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zimmermann, H., Stehlik, D., & Hausser, K. H. (1971). Excitation of triplet excitons in aromatic single crystals by guest-host energy transfer. Chemical Physics Letters, 11(4), 496-500. doi:10.1016/0009-2614(71)80393-7.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-8325-1
Zusammenfassung
Selective excitation of singlet states of one guest molecule (phenazine or acridine as donor) in a host single crystal (fluorene or diphenyl) populates the lowest triplet state of a second guest molecule (naphthalene-d8 or pyrene-d10 as acceptor). Phosphorescence as well as ESR were used to detect the population of the triplet states of the acceptor. The results can be interpreted only as energy transfer from the donor singlet to the acceptor triplet state either via intermolecular intersystem crossing from a donor singlet state to the lowest triplet state of the host or via intramolecular intersystem crossing and triplet-triplet energy transfer to the host from a higher triplet state or from a highly excited vibrational level of the triplet ground state of the donor, followed both by triplet exciton diffusion and exciton-trapping in the acceptor triplet state. High quantum yields up to 5% can be estimated for the observed energy transfer process.