Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nuclear Zeeman and dipolar relaxation due to slow motion in aromatic single crystals

MPG-Autoren
/persons/resource/persons206364

Lauer,  Otmar
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons205764

Stehlik,  D.
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93336

Hausser,  Karl H.
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lauer, O., Stehlik, D., & Hausser, K. H. (1972). Nuclear Zeeman and dipolar relaxation due to slow motion in aromatic single crystals. Journal of Magnetic Resonance, 6(4), 524-532. doi:10.1016/0022-2364(72)90162-X.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-8237-1
Zusammenfassung
Nuclear relaxation in the rotating frame was measured to investigate slow but large amplitude mobility in naphthalene- and biphenyl-type crystals. Reorientation of the whole molecule around molecular axes appears to be the most probable motion. While increasing fluorine substitution slows down the mobility in biphenyl the opposite is true for naphthalene crystals. According to the effective external fields acting on the sample the following relaxation rates were measured: : relaxation of Zeeman order in the high magnetic field H0; : relaxation of Zeeman order in the rotating frame effective field Hϱ under rf-irradiation; : relaxation of dipolar order in the local dipolar field : spin-spin relaxation rate. For the dipolar relaxation rate in some crystals deviations by orders of magnitude were found with respect to the following theoretical predictions: (1) All relaxation rates are expected to be essentially equal in the “extreme narrowing” regime: ω0τ r ⪡ 1. (2) The ratio of the relaxation maxima , should be given approximately by that of the inverse Larmor frequencies in the effective field .