Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Interplay among electrostatic, dispersion, and steric interactions: Spectroscopy and quantum chemical calculations of pi-hydrogen bonded complexes.

MPG-Autoren
/persons/resource/persons206233

Kumar,  S.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

2453595_Suppl.pdf
(Ergänzendes Material), 755KB

Zitation

Kumar, S., Singh, S. K., Vaishnav, J. K., Hill, J. G., & Das, A. (2017). Interplay among electrostatic, dispersion, and steric interactions: Spectroscopy and quantum chemical calculations of pi-hydrogen bonded complexes. ChemPhysChem, 18(7), 828-838.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-76E0-B
Zusammenfassung
π-Hydrogen bonding interactions are ubiquitous in both materials and biology. Despite their relatively weak nature, great progress has been made in their investigation by experimental and theoretical methods, but this becomes significantly more complicated when secondary intermolecular interactions are present. In this study, the effect of successive methyl substitution on the supramolecular structure and interaction energy of indole⋅⋅⋅methylated benzene (ind⋅⋅⋅n-mb, n=1–6) complexes is probed through a combination of supersonic jet experiments and benchmark-quality quantum chemical calculations. It is demonstrated that additional secondary interactions introduce a subtle interplay among electrostatic and dispersion forces, as well as steric repulsion, which fine-tunes the overall structural motif. Resonant two-photon ionization and IR–UV double-resonance spectroscopy techniques are used to probe jet-cooled ind⋅⋅⋅n-mb (n=2, 3, 6) complexes, with redshifting of the N−H IR stretching frequency showing that increasing the degree of methyl substitution increases the strength of the primary N−H⋅⋅⋅π interaction. Ab initio harmonic frequency and binding energy calculations confirm this trend for all six complexes. Electronic spectra of the three dimers are broad and structureless, with quantum chemical calculations revealing that this is likely to be due to multiple tilted conformations of each dimer possessing similar stabilization energies.