English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The limits to global-warming mitigation by terrestrial carbon removal

MPS-Authors
/persons/resource/persons61233

Boysen,  Lena
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Boysen_et_al-2017-Earth.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Boysen, L., Lucht, W., Gerten, D., Heck, V., Lenton, T., & Schellnhuber, H. (2017). The limits to global-warming mitigation by terrestrial carbon removal. Earth's Future, 5, 463-474. doi:10.1002/2016EF000469.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6EE8-D
Abstract
Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract "business-as-usual" emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50 storage efficiency requires >1.1Gha of the most productive agricultural areas or the elimination of >50 of natural forests. In addition, >100MtN/yr fertilizers would be needed to remove the roughly 320GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable "supporting actor" for strong mitigation if sustainable schemes are established immediately. © 2017 American Geophysical Union.