Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simultaneous engineering of an enzyme's entrance tunnel and active site: the case of monoamine oxidase MAO-N

MPG-Autoren

Li,  Guangyue
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Fachbereich Chemie, Philipps-Universität;

/persons/resource/persons137066

Lonsdale,  Richard
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Fachbereich Chemie, Philipps-Universität;

/persons/resource/persons58919

Reetz,  Manfred T.
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Fachbereich Chemie, Philipps-Universität;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, G., Yao, P., Gong, R., Li, J., Liu, P., Lonsdale, R., et al. (2017). Simultaneous engineering of an enzyme's entrance tunnel and active site: the case of monoamine oxidase MAO-N. Chemical Science, 8(5), 4093-4099. doi:10.1039/C6SC05381E.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-7028-E
Zusammenfassung
A new directed evolution approach is presented to enhance the activity of an enzyme and to manipulate stereoselectivity by focusing iterative saturation mutagenesis (ISM) simultaneously on residues lining the entrance tunnel and the binding pocket. This combined mutagenesis strategy was applied successfully to the monoamine oxidase from Aspergillus niger (MAO-N) in the reaction of sterically demanding substrates which are of interest in the synthesis of chiral pharmaceuticals based on the benzo-piperidine scaffold. Reversal of enantioselectivity of Turner-type deracemization was achieved in the synthesis of (S)-1,2,3,4-tetrahydro-1-methyl-isoquinoline, (S)-1,2,3,4-tetrahydro-1-ethylisoquinoline and (S)-1,2,3,4- tetrahydro-1-isopropylisoquinoline. Extensive molecular dynamics simulations indicate that the altered catalytic profile is due to increased hydrophobicity of the entrance tunnel acting in concert with the altered shape of the binding pocket.