English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Towards MRI temperature mapping in real time-the proton resonance frequency method with undersampled radial MRI and nonlinear inverse reconstruction.

MPS-Authors
/persons/resource/persons202599

Zhang,  Z.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15525

Michaelis,  T.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2451012.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, Z., Michaelis, T., & Frahm, J. (2017). Towards MRI temperature mapping in real time-the proton resonance frequency method with undersampled radial MRI and nonlinear inverse reconstruction. Quantitative Imaging in Medicine and Surgery, 7(2), 251-258. doi:10.21037/qims.2017.03.03.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-5A6F-B
Abstract
Background: Optimal control of minimally invasive interventions by hyperthermia requires dynamic temperature mapping at high temporal resolution. Methods: Based on the temperature-dependent shift of the proton resonance frequency (PRF), this work developed a method for real-time MRI thermometry which relies on highly undersampled radial FLASH MRI sequences with iterative image reconstruction by regularized nonlinear inversion (NLINV). As a first step, the method was validated with use of a temperature phantom and ex vivo organs (swine kidney) subjected to heating by warm water or a pulsed laser source. Results: The temperature maps obtained by real-time PRF MRI demonstrate good accuracy as independently controlled by fiber-optic temperature sensors. Moreover, the dynamic results demonstrate both excellent sensitivity to single laser pulses (20 ms duration, 6 J energy output) and high temporal resolution, i.e., 200 ms acquisition times per temperature map corresponding to a rate of 5 frames per second. In addition, future extensions to in vivo applications were prepared by addressing the breathingrelated motion problem by a pre-recorded library of reference images representative of all respiratory states. Conclusions: The proposed method for real-time MRI thermometry now warrants further developments towards in vivo MRI monitoring of thermal interventions in animals.