Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Signal recognition particle prevents N-terminal processing of bacterial membrane proteins.

MPG-Autoren
/persons/resource/persons205916

Ranjan,  A.
Department of Physical Biochemistry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons205918

Mercier,  E.
Department of Physical Biochemistry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons16038

Wintermeyer,  W.
Research Group of Ribosome Dynamics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2450872.pdf
(Verlagsversion), 752KB

Ergänzendes Material (frei zugänglich)

2450872_Suppl.pdf
(Ergänzendes Material), 196KB

Zitation

Ranjan, A., Mercier, E., Bhatt, A., & Wintermeyer, W. (2017). Signal recognition particle prevents N-terminal processing of bacterial membrane proteins. Nature Communications, 8: 15562. doi:10.1038/ncomms15562.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-5951-6
Zusammenfassung
Bacterial proteins are synthesized with an N-formylated amino-terminal methionine, and N-formylated peptides elicit innate-immunity responses against bacterial infections. However, the source of these formylated peptides is not clear, as most bacterial proteins are co-translationally deformylated by peptide deformylase. Here we develop a deformylation assay with translating ribosomes as substrates, to show that the binding of the signal recognition particle (SRP) to signal sequences in nascent proteins on the ribosome prevents deformylation, whereas deformylation of nascent proteins without signal sequence is not affected. Deformylation and its inhibition by SRP are not influenced by trigger factor, a chaperone that interacts with nascent chains on the ribosome. We propose that bacterial inner-membrane proteins, in particular those with N-out topology, can retain their N-terminal formyl group during cotranslational membrane insertion and supply formylated peptides during bacterial infections.