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Machine learning of accurate energy-conserving
molecular force fields
Stefan Chmiela,1 Alexandre Tkatchenko,2,3* Huziel E. Sauceda,3 Igor Poltavsky,2

Kristof T. Schütt,1 Klaus-Robert Müller1,4,5*

Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—
we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular
force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The
GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules
with an accuracy of 0.3 kcal mol� 1 for energies and 1 kcal mol� 1 Å� 1 for atomic forces using only 1000 confor-
mational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including
benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force
fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the
law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for mol-
ecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force
fields with the accuracy and transferability of high-level ab initio methods.

INTRODUCTION
Within theBorn-Oppenheimer (BO)approximation,predictivesimulations
ofproperties and functionsofmolecular systems requireanaccuratedescrip-
tion of the global potential energy hypersurfaceVBO(r� 1, r� 2, …, r� N),
where r� i indicates the nuclear Cartesian coordinates. Although
VBOcould, in principle, be obtained on the fly using explicit ab initio
calculations, more efficient approaches that can access the long time
scales are required to understand relevant phenomena in large mo-
lecular systems. A plethora of classical mechanistic approximations
to VBO have been constructed, in which the parameters are typically
fitted to a small set of ab initio calculations or experimental data.
Unfortunately, these classical approximations may suffer from the
lack of transferability and can yield accurate results only close to
the conditions (geometries) they have been fitted to. Alternatively,
sophisticated machine learning (ML) approaches that can accurately
reproduce the global potential energy surface (PES) for elemental
materials (1–9)andsmallmolecules (10–16)havebeenrecentlydeveloped
(see Fig. 1, A and B) (17). Although potentially very promising, one par-
ticular challenge for direct ML fitting of molecular PES is the large
amountofdatanecessarytoobtainanaccuratemodel.Often,manythou-
sands or even millions of atomic configurations are used as training
data for ML models. This results in nontransparent models, which are
difficult to analyze and may break consistency (18) between energies
and forces.

A fundamental property that any force fieldFi( r� 1, r� 2, …, r� N) must
satisfy is the conservation of total energy, which implies that
Fið�r1; �r2; …; �rNÞ ¼ � � �ri Vð�r1; �r2; …; �rNÞ. Any classical mechanistic
expressions for the potential energy (also denoted as classical force
field) or analytically derivable ML approaches trained on energies sat-
isfy energy conservation by construction. However, even if conserva-

tion of energy is satisfied implicitly within an approximation, this does
not imply that the model will be able to accurately follow the trajectory
of the true ab initio potential, which was used to fit the force field. In
particular, small energy/force inconsistencies between the force field
model and ab initio calculations can lead to unforeseen artifacts in
the PES topology, such as spurious critical points that can give rise
to incorrect molecular dynamics (MD) trajectories. Another funda-
mental problem is that classical and ML force fields focusing on energy
as the main observable have to assume atomic energy additivity—an
approximation that is hard to justify from quantum mechanics.

Here, we present a robust solution to these challenges by construct-
ing an explicitly conservative ML force field, which uses exclusively
atomic gradient information in lieu of atomic (or total) energies. In this
manner, with any number of data samples, the proposed model fulfills
energy conservation by construction. Obviously, the developed ML
force field can be coupled to a heat bath, making the full system (mol-
ecule and bath) non–energy-conserving.

We remark that atomic forces are true quantum-mechanical observa-
bles within the BO approximation by virtue of the Hellmann-Feynman
theorem. The energy of a molecular system is recovered by analytic
integration of the force-field kernel (see Fig. 1C). We demonstrate that
our gradient-domain machine learning (GDML) approach is able to
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forces in small- and medium-sized molecules. However, in the future,
the GDML model should be combined with an accurate model for in-
termolecular forces to enable predictive simulations of condensed mo-
lecular systems. Widely used classical mechanistic force fields are based on
Chmielaet al., Sci. Adv.2017;3 :e1603015 5 May 2017
simple harmonic terms for intramolecular degrees of freedom. Our
GDML model correctly treats anharmonicities by using no assumptions
whatsoever on the analytic form on the interatomic potential energy
functions within molecules.
Kernel

Geometry Space

Kernel function

En
er

gy
 [k

ca
l/m

ol
]

En
er

gy
 [k

ca
l/m

ol
]

En
er

gy
 [k

ca
l/m

ol
]

Descriptor

D
iff

erentiation

Kernel

C Force domain

Descriptor encodes molecular structure.

Kernel function measures the similarity 
between pairs of inputs.

Solution: 
Training in the force domain accurately re-
produces PES topology.Integration

En
er

gy
 [k

ca
l/m

ol
]

B Energy domain

Energy samples

Force samples

...

Problem: 
Energy-based model lacks detail in under-
sampled regions.

...

Prediction

Prediction

Test error

Energy model

Force model

ML

ML

A

Fig. 1. The construction of ML models: First, reference data from an MD trajectory are sampled. (A) The geometry of each molecule is encoded in a descripto
This representation introduces elementary transformational invariances of energy and constitutes the first part of the prior. A kernel function then relates all descriptors
to form the kernel matrix—the second part of the prior. The kernel function encodes similarity between data points. Our particular choice makes only weak ass
tions: It limits the frequency spectrum of the resulting model and adds the energy conservation constraint. Hess, Hessian. (C) These general priors are sufficient t
reproduce good estimates from a restricted number of force samples. (B) A comparable energy model is not able to reproduce the PES to the same level of de
Ground truth Samples Vector field Conservative field Solenoidal field

f

f Helmholtz decomposition

Fig. 2. Modeling the true vector field (leftmost subfigure) based on a small number of vector samples With GDML, a conservative vector field estimatêf F is
obtained directly. A naïve estimator̂f

�
F with independent predictions for each element of the output vector is not capable of imposing energy conservation constrain

We perform a Helmholtz decomposition of this nonconservative vector field to show the error component that violates the law of energy conservation. This is the
portion of the overall prediction error that was avoided with GDML because of the addition of the energy conservation constraint.
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METHODS
The GDML approach explicitly constructs an energy-conserving
force field, avoiding the application of the noise-amplifying deriv-
ative operator to a parameterized potential energy model (see the
Supplementary Materials for details). This can be achieved by directly
learning the functional relationship

f̂ F :ð→r1;
→
r2;…;

→
rNÞi →

ML
Fi ð1Þ

between atomic coordinates and interatomic forces, instead of com-
puting the gradient of the PES (see Fig. 1, C and B). This requires
constraining the solution space of all arbitrary vector fields to the
subset of energy-conserving gradient fields. The PES can be obtained
through direct integration of f̂ F up to an additive constant.

To construct f̂ F, we used a generalization of the commonly used
kernel ridge regression technique for structured vector fields (see
Chmielaet al., Sci. Adv.2017;3 :e1603015 5 May 2017
the Supplementary Materials for details) (19–21). GDML solves
the normal equation of the ridge estimator in the gradient domain
using the Hessian matrix of a kernel as the covariance structure. It
maps to all partial forces of a molecule simultaneously (see Fig. 1A)

KHess �ð Þ þ � I
� � →a ¼ ∇VBO ¼ −F ð2Þ

We resorted to the extensive body of research on suitable
kernels and descriptors for the energy prediction task (10, 13, 17).

For our application, we considered a subclass from the parametric
Matérn family (22–24) of (isotropic) kernel functions

� : Cv¼nþ1
2

dð Þ ¼ exp −

�����
2v

p
d

�

� �
Pn dð Þ;

Pn dð Þ ¼ ∑
n

k¼0

ðn þ kÞ!
ð2nÞ!

n
k

� �
2

�����
2v

p
d

�

� � n−k

ð3Þ

where d ¼ ∥x
→ � x

→
′∥ is the Euclidean distance between two mol-

ecule descriptors. It can be regarded as a generalization of the
universal Gaussian kernel with an additional smoothness par-
ameter n. Our parameterization n = 2 resembles the Laplacian
kernel, as suggested by Hansen et al. (13), while being sufficient-
ly differentiable.

To disambiguate Cartesian geometries that are physically
equivalent, we used an input descriptor derived from the Coulomb
matrix (see the Supplementary Materials for details) (10).

The trained force field estimator collects the contributions of the
partial derivatives 3N of all training points M to compile the prediction.
It takes the form

f̂ F
→x

� � ¼ ∑
M

i¼1
∑
3N

j¼1

→a i

� �
j

∂
∂xj

∇� →x ;→x i

� � ð4Þ

and a corresponding energy predictor is obtained by integrating f̂ Fðx→Þ
with respect to the Cartesian geometry. Because the trained model is a
(fixed) linear combination of kernel functions, integration only affects
the kernel function itself. The expression

f̂ E
→x

� � ¼ ∑
M

i¼1
∑
3N

j¼1

→a i
� �

j

∂
∂xj

� →x ;→x i
� � ð5Þ

for the energy predictor is therefore neither problem-specific nor does it
require retraining.

We remark that our PES model is global in the sense that each
molecular descriptor is considered as a whole entity, bypassing the
need for arbitrary partitioning of energy into atomic contributions.
This allows the GDML framework to capture chemical and long-
range interactions. Obviously, long-range electrostatic and van der
Waals interactions that fall within the error of the GDML model
will have to be incorporated with explicit physical models. Other
approaches that use ML to fit PESs such as Gaussian approximation
potentials (3, 8) have been proposed. However, these approaches con-
sider an explicit localization of the contribution of individual atoms to
the total energy. The total energy is expressed as a linear combination
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Fig. 3. Efficiency of GDML predictor versus a model that has been trained on
energies. (A) Required number of samples for a force prediction performance

MAE (1 kcal mol−1 Å−1) with the energy-based model (gray) and GDML (blue). T
energy-based model was not able to achieve the targeted performance with th
maximum number of 63,000 samples for aspirin. (B) Force prediction errors for
the converged models (same number of partial derivative samples and ener
samples). (C) Energy prediction errors for the converged models. All reported pr
diction errors have been estimated via cross-validation.
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Fig. 4 for classical and quantum MD simulations of aspirin at T = 300 K.
Figure 4A shows a comparison of interatomic distance distributions,
h(r), from MD@DFT and MD@GDML. Overall, we observe a quanti-
tative agreement in h(r) between DFT and GDML simulations. The
small differences in the distance range between 4.3 and 4.7 Å result
from slightly higher energy barriers of the GDML model in the
pathway from A to B corresponding to the collective motions of the
carboxylic acid and ester groups in aspirin. These differences vanish
once the quantum nature of the nuclei is introduced in the PIMD sim-
ulations (29). In addition, long–time scale simulations are required to
completely understand the dynamics of molecular systems. Figure 4B
shows the probability distribution of the fluctuations of dihedral angles
of carboxylic acid and ester groups in aspirin. This plot shows the ex-
istence of two main metastable configurations A and B and a short-
lived configuration C, illustrating the nontrivial dynamics captured
by the GDML model. Finally, we remark that a similarly good
performance as for aspirin is also observed for the other seven mole-
cules shown in Fig. 3. The efficiency of the GDML model (which is
three orders of magnitude faster than DFT) should enable long–time
scale PIMD simulations to obtain converged thermodynamic proper-
ties of intermediate-sized molecules with the accuracy and transferabil-
ity of high-level ab initio methods.

In summary, the developed GDML model allows the construction
of complex multidimensional PES by combining rigorous physical laws
with data-driven ML techniques. In addition to the presented success-
ful applications to the model systems and intermediate-sized mole-
cules, our work can be further developed in several directions, including
scaling with system size and complexity, incorporating additional physical
priors, describing reaction pathways, and enabling seamless coupling be-
tween GDML and ab initio calculations.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/5/e1603015/DC1
section S1. Noise amplification by differentiation
section S2. Vector-valued kernel learning
section S3. Descriptors
section S4. Model analysis
section S5. Details of the PIMD simulation
fig. S1. The accuracy of the GDML model (in terms of the MAE) as a function of training set
Chemical accuracy of less than 1 kcal/mol is already achieved for small training sets.
fig. S2. Predicting energies and forces for consecutive time stepsof an MDsimulation of uracil at 50
table S1. Properties of MD data sets that were used for numerical testing.
table S2. GDML prediction accuracy for interatomic forces and total energies for all data sets.
table S3. Accuracy of the naïve force predictor.
table S4. Accuracy of the converged energy-based predictor.
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