English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications

MPS-Authors
/persons/resource/persons58905

Qiao,  Yunxiang
Service Department Theyssen (Technical Labs), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59042

Theyssen,  Nils
Service Department Theyssen (Technical Labs), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Qiao, Y., Ma, W., Theyssen, N., Chen, C., & Hou, Z. (2017). Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications. Chemical Reviews, 117(10), 6881-6928. doi:10.1021/acs.chemrev.6b00652.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6EEB-7
Abstract
Temperature-responsive ionic liquids (ILs), their fundanmental behaviors, and catalytic applications were introduced, especially the concepts of upper critical solution temperature (UCST) and lower critical solution temperature (LCST). It is described that, during a catalytic reaction, they form a homogeneous mixture with the reactants and products at reaction temperature but separate from them afterward at ambient conditions. It is shown that this behavior offers an effective alternative approach to overcome gas/liquid–solid interface mass transfer limitations in many catalytic transformations. It should be noted that IL-based thermomorphic systems are rarely elaborated until now, especially in the field of catalytic applications. The aim of this article is to provide a comprehensive review about thermomorphic mixtures of an IL with H2O and/or organic compounds. Special focus is laid on their temperature dependence concerning UCST and LCST behavior, including systems with conventional ILs, metal-containing ILs, polymerized ILs, as well as the thermomorphic behavior induced via host–guest complexation. A wide range of applications using thermoregulated IL systems in chemical catalytic reactions as well as enzymatic catalysis were also demonstrated in detail. The conclusion is drawn that, due to their highly attractive behavior, thermoregulated ILs have already and will find more applications, not only in catalysis but also in other areas.