English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

High-pressure freezing electron microscopy of zebrafish oocytes.

MPS-Authors
/persons/resource/persons15710

Riedel,  D.
Facility for Electron Microscopy, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kanagaraj, P., Riedel, D., & Dosch, R. (2016). High-pressure freezing electron microscopy of zebrafish oocytes. In I. P. Nezis (Ed.), Oogenesis-Methods and Protocols.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-4927-3
Abstract
Oogenesis is an essential cellular and developmental process to prepare the oocyte for propagation of a species after fertilization. Oocytes of oviparous animals are enormous cells endowed with many, big cellular compartments, which are interconnected through active intracellular transport. The dynamic transport pathways and the big organelles of the oocyte provide the opportunity to study cellular trafficking with outstanding resolution. Hence, oocytes were classically used to investigate cellular compartments. Though many novel regulators of vesicle trafficking have been discovered in yeast, tissue culture cells and invertebrates, recent forward genetic screens in invertebrate and vertebrate oocytes isolated novel control proteins specific to multicellular organisms. Zebrafish is a widely used vertebrate model to study cellular and developmental processes in an entire animal. The transparency of zebrafish embryos allows following cellular events during early development with in vivo imaging. Unfortunately, the active endocytosis of the oocyte also represents a drawback for imaging. The massive amounts of yolk globules prevent the penetration of light-beams and currently make in vivo microscopy a challenge. As a consequence, electron microscopy (EM) still provides the highest resolution to analyze the ultra-structural details of compartments and organelles and the mechanisms controlling many cellular pathways of the oocyte. Among different fixation approaches for EM, High Pressure Freezing (HPF) in combination with freeze substitution significantly improves the samples preservation closest to their natural status. Here, we describe the HPF with freeze substitution embedding method for analyzing cellular processes in zebrafish oocytes using electron microscopy.