English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions

MPS-Authors
/persons/resource/persons62352

Carvalhais,  Nuno
Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62524

Reichstein,  Markus
Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Carreiras, J. M., Quegan, S., Le Toan, T., Minh, D. H. T., Saatchi, S. S., Carvalhais, N., et al. (2017). Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions. Remote Sensing of Environment, 196, 154-162. doi:10.1016/j.rse.2017.05.003.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-4463-7
Abstract
The magnitude of the global terrestrial carbon pool and related fluxes to and from the atmosphere are still poorly known. The European Space Agency P-band radar BIOMASS mission will help to reduce this uncertainty by providing unprecedented information on the distribution of forest above-ground biomass (AGB), particularly in the tropicswhere the gaps are greatest and knowledge ismost needed.Mission selection wasmade in full knowledge of coverage restrictions over Europe, North and Central America imposed by the US Department of Defense Space Objects Tracking Radar (SOTR) stations. Under these restrictions, only 3% of AGB carbon stock coverage is lost in the tropical forest biome,with this biome representing 66% of global AGB carbon stocks in 2005. The loss is more significant in the temperate (72%), boreal (37%) and subtropical (29%) biomes, with these accounting for approximately 12%, 15% and 7%, respectively, of the global forest AGB carbon stocks. In terms of global carbon cycle modelling, there is minimal impact in areas of high AGB density, since mainly lower biomass forests in cooler climates are affected. In addition, most areas affected by the SOTR stations are located in industrialized countries with well-developed national forest inventories, so that extensive information on AGB is already available. Hence the main scientific objectives of the BIOMASS mission are not seriously compromised. Furthermore, several space sensors that can estimate AGB in lower biomass forests are in orbit or planned for launch between now and the launch of BIOMASS in 2021, which will help to fill the gaps in mission coverage.