English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Inside Back Cover: Structure and Fluxionality of B13+ Probed by Infrared Photodissociation Spectroscopy

MPS-Authors
/persons/resource/persons45968

Fagiani,  Matias Ruben
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;

/persons/resource/persons104332

Song,  Xiaowei
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;

/persons/resource/persons192335

Debnath,  Sreekanta
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fagiani, M. R., Song, X., Petkov, P., Debnath, S., Gewinner, S., Schöllkopf, W., et al. (2017). Inside Back Cover: Structure and Fluxionality of B13+ Probed by Infrared Photodissociation Spectroscopy. Angewandte Chemie International Edition, 56(2), 655-655. doi:10.1002/anie.201610954.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-43AA-2
Abstract
The magic number boron cluster B13+ previously termed as a “molecular Wankel motor”, is predicted to exhibit an exceptional fluxionality already at low temperatures. In their Communication on page 505 ff., K. R. Asmis et al. spectroscopically confirm the structural assignment to a planar boron double wheel species and present the first experimental evidence for the quasi-rotation of the inner B3-ring using cryogenic ion vibrational spectroscopy of B13+ combined with density functional theory computations and Born–Oppenheimer molecular dynamics simulations.