English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Swimming droplets.

MPS-Authors
/persons/resource/persons173584

Maass,  Corinna C.
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192297

Krüger,  Carsten
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173455

Bahr,  Christian
Group Structure formation in soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Maass, C. C., Krüger, C., Herminghaus, S., & Bahr, C. (2016). Swimming droplets. Annual Review of Condensed Matter Physics, 7, 171-193. doi:10.1146/annurev-conmatphys-031115-011517.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-38DA-F
Abstract
Swimming droplets are artificial microswimmers based on liquid droplets that show self-propelled motion when immersed in a second liquid. These systems are of tremendous interest as experimental models for the study of collective dynamics far from thermal equilibrium. For biological systems, such as bacterial colonies, plankton, or fish swarms, swimming droplets can provide a vital link between simulations and real life. We review the experimental systems and discuss the mechanisms of self-propulsion. Most systems are based on surfactant-stabilized droplets, the surfactant layer of which is modified in a way that leads to a steady Marangoni stress resulting in an autonomous motion of the droplet. The modification of the surfactant layer is caused either by the advection of a chemical reactant or by a solubilization process. Some types of swimming droplets possess a very simple design and long active periods, rendering them promising model systems for future studies of collective behavior.